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Bayesian networks are a popular method for represenE
ing joint probability distributions over many variables. A

Abstract

Recently developed techniques have made it pos-
sible to quickly learn accurate probability density
functions from data in low-dimensional continu-
ous spaces. In particular, mixtures of Gaussians
can be fitted to data very quickly using an ac-
celerated EM algorithm that employs multires-
olution kd-trees (Moore, 1999). In this paper,
we propose a kind of Bayesian network in which
low-dimensional mixtures of Gaussians over dif-
ferent subsets of the domain’s variables are com-
bined into a coherent joint probability model over
the entire domain. The network is also capable
of modeling complex dependencies between dis-
crete variables and continuous variables without
requiring discretization of the continuous vari-
ables. We present efficient heuristic algorithms
for automatically learning these networks from
data, and perform comparative experimentsiillus-
trating how well these networks model real sci-
entific data and synthetic data. We also briefly
discuss some possible improvements to the net-
works, as well as possible applications.

INTRODUCTION

Bayesian network contains a directed acyclic gr&phith

one vertexV; in the graph for each variabl&; in the do-

P(X)asP(X) = H 1 P(X; |H) whereN is the num-
ber of variables in the domain. Thus, if in addition@b
we also specifyP (X;|II;) for every variableX;, then we
have specified a valid probability distributidﬂ(f) over
the entire domain.

Bayesian networks are most commonly used in situations
where all the variables are discrete; if continuous vaeabl
are modeled at all, they are typically assumed to follow
simple parametric distributions such as Gaussians. Some
researchers have recently investigated the use of complex
continuous distributions within Bayesian networks; for ex
ample, weighted sums of Gaussians have been used to ap-
proximate conditional probability density functions (et

and Morrell, 1995). Such complex distributions over con-
tinuous variables are usually quite computationally expen
sive to learn. This expense may not be too problematic
if an appropriate Bayesian network structure is known be-
forehand. On the other hand, if the dependencies between
variables are not knowa priori and the structure must be
learned from data, then the number of conditional distri-
butions that must be learned and tested while a structure-
learning algorithm searches for a good network can become
unmanageably large.

However, very fast algorithms for learning complex joint
probability densities over small sets of continuous vdeiab
have recently been developed (Moore, 1999). This pa-
per investigates how these algorithms can be used to learn
ayesian networks over many variables, each of which can
e either continuous or discrete.

2 MIX-NETS

main. The directed edges in the graph specify a set of inde-
pendence relationships between the variables. Défijrte
be the set of variables whose nodes in the graph are “pafuppose we have a very fast, black-box algorithgeared

ents” of V The set of |ndependence re|at|onsh|ps Specnot towards flndlng accurate conditional models of the form
ified by G is then as follows: given the values Hf but
no other information,X; is conditionally independent of ability models P;(.S;) over subsets of variableS;, such
all variables corresponding to nodes that are W&t de-
scendants in the graph. These independence relationshigenerating joint models for relatively small subsets of the
allows us to decompose the joint probability distribution variables, and that the models returned for different sub-

P(X; |H ), but rather towards finding accurqt&nt prob-

asP; (Xz,ﬁ ). Furthermore, suppose it is only capable of



sets of variables are not necessarily consistent. Can live stduces a distribution of the following mathematical form:
combine many different models generatedbinto a valid

probability distribution over the entire space? M

P(316) = Y an@rl|Shl)™F ep(~ 2 (S—4i) "5 (§-4ik)
Fortunately, the answer is yes, as long as the models re- k=1

turned byA can be marginalized exactly. If for any given
P;(X;,1I;) we can compute a marginal distributiéh(II;)
that is consistent with it, then we can emplByas a con-
ditional distributionP,-(Xi|1T,-) = P,-(Xi,rfi)/P,-(IT,-). In
this case, given a directed acyclic graghspecifying a
Bayesian network structure ovar variables, we can sim-
ply use A to acquireN modelsP;(X;,1I;), marginalize ~ Given a Gaussian mixture mod®|(X;, IT;), it is easy to
these models, and string them together to form a diStribUcompute the marginalizatidﬁi(ﬁi); the marginal mixture

whereqy, represents the probability of a point coming from
the k" class, and denotes the entire set of the mixture’s
parameters (the’s, p's and¥’s). It is possible to model
any continuous probability distribution with arbitrarycae
racy by using a mixture with a sufficiently largé.

tion over the entire space: has the same number of Gaussians as the original mix-
N ture, with the same’s. The means and covariances of the

P(X)= [T Pix, IT;) / P;(11;)) marginal mixture are simply the means and covariances of
i=1 the original mixture with all elements corresponding to the

variableX; removed. Thus, Gaussian mixture models are
Even though the marginals of differeRf's may be incon-  suitable for combining into global joint probability detysi
sistent with each other, thié's are onlyusedconditionally,  functions using the methodology described in section 2, as-
and in a manner that prevents these inconsistencies froguming all variables in the domain are continuous. This is
actually causing the overall model to become inconsistenthe class of models we employ for continuous variables in
Of course, the fact that there are inconsistencies at all —thjs paper, a|th0ugh many other classes may be used in an
suppressed or not — means that there is a certain amouBhalogous fashion.
of redundancy in the overall model. However, if allowing

such redundancy lets us employ a particularly fast and efI'he functional form of the conditional distribution we use
fective model-learning algorithm, it may be worth it. is similar to that employed in previous research by con-
ditionalizing a joint distribution formed by convolving a

Joint models over subsets of variables have been similarlgaussian kernel function with all the datapoints (Hofmann
conditionalized in previous research in order to use thenand Tresp, 1995). The differences are that our distribu-
within Bayesian networks. For example, the conditionaltions use fewer Gaussians, but these Gaussians have vary-
distribution of each variable in the network given its par- ing weights and varying non-diagonal covariance matrices.
ents can be modeled by conditionalizing another “embedThe use of fewer Gaussians makes our method more suit-
ded” Bayesian network that specifies the joint between theple for some applications such as compression, and may
variable and its parents (Heckerman and Meek, 1997akpeed up inference. Our method may also yield more ac-
(Some theoretical issues concerning the interdependenegrrate models in many situations, but we have yet to verify
of parameters in such models appear in (Heckerman anghis experimentally.
Meek, 1997a) and (Heckerman and Meek, 1997b).) Joint
distributions formed by convolving a Gaussian kernelfunc-2.1.1  |earning Gaussian Mixtures From Data
tion with each of the datapoints have also been condition-
alized for use in Bayesian networks over continuous vari-The EM algorithm is a popular method for learning mixture
ables (Hofmann and Tresp, 1995). models from data (see, e.g., (Dempster et al., 1977)). The
algorithm is an iterative algorithm with two steps per itera
21 HANDLING CONTINUOUS VARIABLES tion. The Expectation or' E” step calculates thg distribati .
over the unobserved mixture component variables, using
Suppose for the moment that contains only continuous the currentestimates for the model’'s parameters. The Max-
values. What sorts of models might we wahto return?  imization or “M” step then re-estimates the model's param-
One powerful type of model for representing probability eters to maximize the likelihood of both the observed data
density functions over small sets of variables S@ussian g the unobserved mixture component variables, assum-
mixture mode{see e.g. (Quda and Il-lar.t, 1973)). Lt ing the distribution over mixture components calculated in
represent the values that tjié datgpomt in the datasél the previous “E” step is correct. Each iteration of the EM
assigns to a variable set of interést In a Gaussian mix-  490rithm increases the likelihood of the observed data or

ture model overS, we assume that the data are generategeayes it unchanged:; if it leaves it unchanged, this usually

Itﬂ?r? pﬁgt%ergtg;gmsugg trg%gocmwg?c%gge:%;g;e%m indicates that the likelihood is at a local maximum. Un-
a discrete set of classes, . .., cyr. Then nature d}awg%s fortunately, each iteration of the basic algorithm dessulib

from a multidimensional Gaussian whose mean vegjor above is slow, since it requires a entire pass through the
and covariance matriX; depend on the class. This pro- dataset. Instead, we use an accelerated EM algorithm in



which multiresolutionkd-trees (Moore et al., 1997) are distributionsP; (X;|IL;) = P;(X;, IL;)/P;(IL;). LetC; rep-
used to dramatically reduce the computational cost of eackesent the continuous varrables{m( } U Il Q, represent
iteration (Moore 1999) We refer the interested reader tqhe discrete variables }{]Xl} U Hl, CH represent the con-
this previous paper (Moore, 1999) for details. tinuous variables |ﬁ[z, andQH, representthe discrete vari-

An important remaining issue is how to choose the approables inll;. (EitherQm, = Q; or Cfy, = C;, depending on
priate number of Gaussiand/, for the mixture. If we re- whetherX; is continuous or discrete.)

strict ourselves to too few Gaussians, we will fail to model If X; is continuous, then the marginalized mixture table
the data accurately; on the other hand, if we allow ourselve§Or Pi(II
too many, then we may “overfit” the data and our model
may generalize poorly. A popular way of dealing with this
tradeoff is to choose the model maximizing a scoring func-
tion that includes penalty terms related to the number o
parameters in the model. We employ the Bayesian Infor-
mation Criterion (Schwarz, 1978), or BIC, to choose be-
tween mixtures with different numbers of Gaussians. Th
BIC score for a probability mode?’ () is as follows:

I;) has the same number of entries as the original
table for P;(X;,1I;), and the estimates faP(Q;) in the
marginalized table are the same as in the original table. For
Fach combination of assrgnments@g we margrnalrze the
appropriate Gaussian mixtufe(C;|Q;) = (C |Q1,) in

the original table to a new mixtur®; (Cfy, |Qr1, ), and use
eth|s new mixture in the corresponding spot in the marginal-
ized table.

If X; is discrete, then for each combination of values
|P'| for Qﬁ we com?in(i several different Gaussian mixtures

for variousP(Cn i)’s into a new Gaussian mixture
whereDs is the dataseD restricted to the variables of for P(CH ). First, the values off; (QH ) in the
interestS, R is the number of datapoints in the dataset, andmargrnalrzed table are computed from the original table as
|P'| is the number of parameters . Pi(Qu,) = >ox, P . (Xi, Qu,). Pi(X;|Q1,) is then calcu-

Rather than re-running the EM algorithm to convergencdated asP;(X;, Qn,)/Pi(Qu,). Finally, we combine the
for many different choices aff and choosing the resulting Gaussian mixtures corresponding to different valueX pf
mixture that maximizes the BIC score, we use a heuristi@ccording to the relationship
algorithm that starts with a small number of Gaussians and .
)= Pi(Xi|Qm,) P
X

log R

BIC(P'") =log P'(Ds) —

stochastically tries adding or deleting Gaussians as the EM P;(Cr,
algorithm progresses. The details of this algorithm are de-
scribed in a separate paper (Sand and Moore, 2000).
We have now described the steps necessary to use mixture

2.2 HANDLING DISCRETE VARIABLES tables in order to parameterize Bayesian networks over do-

. mains with both discrete and continuous variables. Note
Suppose now that a set of variablgswe wish to model that mixture tables are not particularly well-suited foatie
mcludes discrete variables as WeII as contlnuous vagable ing with discrete variables that can take on many possible
Let @; be the discrete variables ifi, andC; the contin-  values, or for scenarios involving many dependent discrete
uous variables ir§;. One simple model foP; (Qz, ) is  variables — in such situations, the continuous data will be
a lookup table with an entry for each possible getf as-  shattered into many separate Gaussian mixtures, each of
signments ta);. The entry in the table corresponding to a which will have little support. Better ways of dealing with
particularg; contains two things: the marginal probability discrete variables are undoubtedly possible, but we leave
P;(¢i), and a Gaussian mixture modeling the conditionalthem for future research (see section 6.3).
distributionP;(C;| ;). Let us refer to tables of this form as
mixture tables We obtain the mixture table’s estimate for 3 LEARNING MIX-NET STRUCTURES
eachP;(q;) directly from the data: it is simply the fraction
of'the recordsi n the dataset that aSSIgn§ the YM" Given a Bayesian network structure over a domain with
Given an algorithmi for learning Gaussian mixtures from
tribution P;(C;|¢;) in the mixture table by calling it with
the subset of the datasBtthat is consistent with the val-
ues specified by;.

each variable and its parent variables, and how to marginal-
ize these mixture tables to obtain the conditional distribu
tions needed to compute a coherent probability function
Suppose now that we are given a network structure oveover the entire domain. But what if we don’t knanpri-

the entire set of variables, and for each variallleve are  ori what dependencies exist between the variables in the
given a mixture table foPi(§i) = P(X;, H_}). We must domain — can we learn these dependencies automatically
now calculate new mixture tables for the marginal distri-and find the best Bayesian network structure on our own,
butionsP; (H ) so that we can use them for the conditional or at least find a “good” network structure?



In general, finding the optimal Bayesian network struc-
ture with which to model a given dataset is NP- . o .
complete (Chickering, 1996), even when all the data is * While there are still variables IRENDING

e B := B., PENDING:= the set of all variablef)ONE:= { }

discrete and there are no missing values or hidden vari- — Consider all pairs of variableX y and X, such thatX 4 is in DONE
bl A | h risti r h to finding network and X, is in PENDING Of these, letX ;**® and X;’““” be the

aples. pOP“ ar heurstc ap_p oac_ 0 g networks pair of variables that maximize& X 4, X, ). Our algorithm selects

that model discrete data well is to hillclimb over network X" as the next variable to consider adding arcs to. (Ties are han

: . . dled arbitrarily, as is the case wheD©NE s currently empty.)

structures, using a scoring function such as the BIC as

th it - t . S Heck t al - Let K’ = min(K, |DONE)|), where K is a user-defined pa-
€ criterion to maXImIZe' ( e_e' e.g., (Hec erman etal, rameter. LetXi,Xﬁ,...Xjf’ denote theK’ variables inDONE

1995).) Unfortunately, hillclimbing usually requires s€o with the highest values of (X, X7***), in descending order of

ing a very large number of networks. While our algorithm I(XE, Xmaes),

for learning Gaussian mixtures from data is comparatively - Fori=1toK":

fast for the complex task it performs, it is still too expen- « If X% now has MAXPARS parents in B, or

sive to re-run on the hundreds of thousands of different if 1(Xg, X;***) is less than zero, break out of the for loop

overi and do not consider adding any more parentXl;G"‘“”.

variable subsets that would be neces_sary 'tO pargmeterlze * Let B' be a network identical td except with an additional
all the networks tested over an extensive hillclimbing run. arc from X} to X ™**_ Call our mixture-learning algorithm to
(Such a hillclimbing algorithm has previously been used update tﬁe parameters fdf,*“*’s node inB', and compute
: . . . I BIC(B').
to find Bay§5|an networks s_wtgble for modeling continu « § BIO(B') > BIC(B),B = B'
ous data with complex distributions (Hofmann and Tresp, — Move X™* from PENDINGto DONE.
P

1995), but in practice this method is restricted to datasets

with relatively small numbers of variables and datapojnts. ) ) )
o ] ] Figure 1: Our network structure learning algorithm.
However, there are other heuristic algorithms that oftesh fin

networks very close in quality to those found by hillclimb-

ing but with much less computation. A frequently used

class of algorithms involves measuring all pairwise inter-in the PENDINGset. Our algorithm proceeds by selecting
actions between the variables, and then constructing a ne@ variable in the®ENDINGset, adding arcs to that variable
work that models the strongest of these pairwise interacfrom other variables in thBONE set, moving the variable
tions (e.g. (Chow and Liu, 1968; Sahami, 1996; Friedmario the DONE set, and repeating until all variables are in
etal., 1999)). We use such an algorithm in this paper to auDONE High-level pseudo-code for the algorithm appears
tomatically learn the structures of our Bayesian networks. in Figure 1.

In order to measure the pairwise interactions between th&he algorithm generate§(NN?) mixture tables contain-
variables, we start with an empty Bayesian netwBgkin ing two variables each in order to calculate all the pair-
which there no arcs — i.e., in which all variables are as-wise dependency strength§X;, X;), and therO(N x K)
sumed to be independent. We use our mixture-learning amore tables containing/ AX PARS + 1 or fewer vari-
gorithm to calculateB,’s parameters, and then calculate ables each during the greedy network constructigris a

B.’s BIC score. (The number of parameters in the networkuser-defined parameter that determines the maximum num-
is computed as the sum of the parameters in each netwoller of potential parents evaluated for each variable during
node, where the parameters of a node for varidblare  the greedy network construction.

the parameters oPi(Xi, II).) Wg then calculate th'e.BIC If MAXPARSSs set to 1 and (X;, X;) is symmetric, then
score of every possible Bayesian network containing exg .+ heuristic algorithm reduces to a maximum spanning

actly one arc. With\ variables, there ar®(N?) such oo aigorithm (or to a maximum-weight forest algorithm if
networks. LetB;; denote the network with a single arc g6 of ther's are negative). Out of all possible Bayesian
from .X; to X;. Note thatto compute the BIC scoreBIj,_ networks in which each variable has at most one parent, this
we need not ref:ompute the mixture _tables for any Va”abk?naximum spanning tree is the Bayesian net\NBﬁgt that
other thaan', since the otherican S|mply"be copied from o yimizes the scoring function. (This is a trivial general-
B.. Now, def'ne[(X?’ X;), the “importance” of the depen- ;441 of the well-known algorithm (Chow and Liu, 1968)
dency between variabl¥; and.;, as follows: for the case where the unpenalized log-likelihood is the ob-

I(X;, X;) = BIC(B;;) — BIC(B,). jective crite.ria'being maximi;ed.) MAXPARSSs set above

1, our heuristic algorithm will always model a superset of

the dependencies iB! ., and will always find a network

opt?
with at least as high 1C score as3, ,;’s.

O]

After computing all thel (X;, X;)’s, we initialize our cur-
rent working networlkB to the empty networlB,, and then
greedily add arcs td using thel(X;, X;)’s as hints for  There are a few details that prevent dyrX;, X;)'s from
what arcs to try adding next. At any given point in the being perfectly symmetric. (See (Davies and Moore,
algorithm, the set of variables is split into two mutually ex 2000).) However] is close enough to symmetric that it's
clusive subset9 ONEandPENDING All variables begin  often worth simply assuming that it is symmetric, since



this cuts down the number of calls we need to make tacomputing thel (X;, X;)’s with the original dataset, we
our mixture-learning algorithm in order to calculate the compute them with a version of the dataset in which each
I(X;, X;)’s by roughly a factor of 2. continuous variable has been discretized to 16 differdnt va
ues. The boundaries of the 16 bins for each variable’s dis-
gretization are chosen so that the numbers of datapoints in
each bin are approximately equal.

Since learning joint distributions involving real variabl

is expensive, calling our mixture table generator even jus
O(N?) times to measure all of thE X;, X;)'s can take a
prohibitive amount of time. We note that tHéX;, X;)’s Mixture tables containing many discrete variables (or a few
are only used to choose the order in which the algorithndiscrete variables each of which can take on many values)
selects variables to move froRENDINGto DONE, and  can severely overfit data, since some combinations of the
to select which arcs to try adding to the graph. The ac-discrete variables may occur rarely in the data. For now,
tual values ofl (X;, X;) are irrelevant — the only things we attempt to address this problem by slightly smoothing
that matter are their ranks and whether they are greateahe distributions represented in the tables. (See (Davigs a
than zero. Thus, in order to reduce the expense of comMoore, 2000) for details.)

puting thel(X;, X;)’s, we can try computing them on a
discretizedversion of the dataset rather than the original
dataset that includes continuous values. The resultirigsran
of I(X;, X;) will not generally be the same as they would
if they were computed from the original dataset, but we
would expect them to be highly correlated in many practi-
cal circumstances.

The Independent Mixtures algorithm is identical to our
mix-net learning algorithm in almost all respects; the main
difference is that here theIAXPARSparameter has been
set to zero, thus forcing all variables to be modeled inde-
pendently. We also give this algorithm more time to learn
each individual Gaussian mixture, so that it is given a total
amount of computational time at least as great as that used
Our structure-learning algorithm is similar to the “Lindte by our mix-net learning algorithm.
:zifnennde?\?vfﬁkza]?;ersggsgilgcszgfgS(Srgﬁ:r?]l:Sllygggl)?lgig;?heTreesalgorithm is identical to our mix-net algorithmin

that our networks have no special target variable, and wé Il respects except that tAXPAR Sparameter has been

. . . tto one, and we give it more time to learn h individual
add the potential parents to a given node one at a time B oone.a dwe give it more time to learn each individua

. ) aussian mixture (as we did for the Independent Mixtures

ensure that each actually increases the network’s score. A .
. . . . algorithm).

ternatively, our learning algorithm can be viewed as a re-
striction of the “Sparse Candidate” algorithm (FriedmanThe Single-Gaussianalgorithm is identical to our pri-
et al., 1999) in which only one set of candidate parentsmary network-learning algorithm except for the follow-
is generated for each node, and in which the search oveng differences. When learning a given Gaussian mixture
network structures restricted to those candidate parents P;(C;|Q;), we use only a single multidimensional Gaus-
performed greedily. (We have also previously used a vergian. (Note, however, that some of the marginal distribu-

similar algorithm for learning networks with which to com- tions P;(Ciy, |Q11,) may contain multiple Gaussians when

press discrete datasets (Davies and Moore, 1999).) the variable marginalized away is discrete.) Since single
Gaussians are much easier to learn in high-dimensional
4 EXPERIMENTS spaces than mixtures are, we allow this single-Gaussian al-

gorithm much more freedom in creating large mixtures. We
set bothMAXPARSaNnd K to the total number of variables
in the domain minus one. We also allow the algorithm to
|use all datapoints in the training set rather than restriot i

4.1 ALGORITHMS

We compare the performance of the network-learning a X L
gorithm described above to the performance of four othef S2mple of 10,000. Finally, we use the original real-valued
algorithms, each of which is designed to be similar todataset rather than a discretized version of the dataset whe

our network-learning algorithm except in one importantComputlng thel (X;, Xj)'s.

respect. First we describe a few details about how ourrhe Pseudo-Discretealgorithm is similar to our primary
primary network-learning algorithm is used in our experi- network-learning algorithm in that it uses the same sort
ments, and then we describe the four alternative algorithmsf greedy algorithm to select which arcs to try adding to

The Mix-Net algorithm is our primary network-learning the network. However, the .netwqus this algorithm pro-
algorithm. For our experiments on both datasets, we s uces do not employ Gaussian mixtures. Instead, the dis-

MAXPARSO 3 andK to 6. When generating any given tributions it uses are closely related to the distributithrag

Gaussian mixture, we give our accelerated EM algorithm/Vould be modeled by a Bayesian network for a completely

thirty seconds to find the best mixture it can. In orderdiscretized version of the dataset. For each continuoiis var
to make the most of these thirty-second intervals, we aIs@Elefi n ghe.domaT], V‘t’)e blieaXi S raﬂge intaf” thCk?]ts'
limit our overall training algorithm to using a sample of at The boundaries of the buckets are chosen so that the num-

most 10,000 datapoints from the training set. Rather thalt?er of datapoints lying within each bucket is approximately



equal. The conditional distribution foY; is modeled with  likelihoods are positive since most of the variables are con
a table containing one entry for every combination of itstinuous and bounded withif), 1], which implies that the
parent variables, where each continuous parent variableimodels usually assign probability densities greater thmn o
value is discretized according to tiebuckets we have se- to regions of the space containing most of the datapoints.
lected for that parent variable. Each entry in the table conThe probability distributions modeled by the networks are
tains a histogram foiX; recording the conditional proba- properly normalized, however.)

bility that X;’s value lies within the boundaries of each of . . . .

) " . On the Bio dataset, our primary mix-net learner achieved
X;'s F buckets. We then translate the conditional probabil-_. . . L
: . : . o . significantly higher log-likelihood scores than the other
ity associated with each bucket into a conditional probabil o
. . ) four model learners. The fact that it significantly outper-
ity density spread uniformly throughout the range of that ; : ;

; . . 2 formed the independent mixture algorithm and the tree-
bucket. (Discrete variables are handled in a similar man-

ner, except the translation from conditional probabditie !earmng.algor_lthm indicates that It s effectwe-ly. utHiz
- - o ing relationships between variables, and that it includes
conditional probability densities is not performed.)

useful relationships more complex than mere pairwise
When performing experiments with the Pseudo-Discretalependencies. The fact that its networks outperformed
network-learning algorithm, we re-run it for several diffe the pseudo-discrete networks and the single-Gaussian net
ent choices of™: 2, 4, 8, 16, 32, and 64. Of the resulting works indicates that the Gaussian mixture models used for
networks, we pick the one that maximizes the BIC. Whenthe network nodes’ parameterizations helped the networks
the algorithm uses a particular value #rtheI(X;, X;)'s  achieve much better prediction than possible with simpler
are computed using a version of the dataset that has beg@rameterizations. Our primary mix-net learning alganith
discretized accordingly, and then arcs are added greeglily dook about an hour and a half of CPU time on a 400 MHz
in our mix-net learning algorithm. The networks producedPentium Il to generate its model for each of the ten cross-
by this algorithm do not have redundant parameters as owmalidation splits for this dataset.

mix-nets do, as each node contains only a model of its vari-

able’s conditional distribution given its parents ratheart The:\ mix-net learner similarly outperformgd the other al-
NV gorithms on the Astro dataset. The algorithm took about
a joint distribution.

three hours of CPU time to generate its model for each of
Note that there are better ways of discretizing real varithe cross-validation splits for this dataset.

ables in Bayesian networks (e.g. (Kozlov and Koller, 1997;TO verify that the mix-net's performance gain over the

Monti and Cooper, 1998a)); the simple discretization al- . ) . .

. : . Pseudo-dlscrete network’s was due to its use of Gaussian
gorithm discussed here and currently implemented for ouf . . . "
experiments is certainly not state-of-the-art. mixtures rather thgn piecewise constanF densities, we con-

structed a synthetic dataset from the Bio dataset. All real

values in the original dataset were discretized in a man-
4.2 DATASETS AND RESULTS ner identical to the manner in which the pseudo-discrete

networks discretized them, with 16 buckets per variable.
We tested the previously described algorithms on two dif{Out of the many different numbers of buckets we tried
ferent datasets taken from real scientific experiments. Th@ith the pseudo-discrete networks, 16 was the number that
“Bio” dataset contains data from a high-throughput biolog-worked best on the Bio dataset.) Each discretized value
ical cell assay. There are 12,671 records and 31 variablegias then translated back into a real value by sampling it
26 of the variables are continuous; the other five are disuniformly from the corresponding bucket's range. The re-
crete. Each discrete variable can take on either two or thresulting synthetic dataset is similar in many respects to the
different possible values. The “Astro” dataset contairtada original dataset, but its probability densities are now eom
taken from the Sloan Digital Sky Survey, an extensive asposed of piecewise constant axis-aligned hyperboxes —
tronomical survey currently in progress. This dataset conprecisely the kind of distributions that the pseudo-digere
tains 111,456 records and 68 variables. 65 of the variablegetworks model. The test-set performance of the pseudo-
are continuous; the other three are discrete, with aritiegliscrete networks on this synthetic dataset is the same as
ranging from three to 81. All continuous values are scaledheir test-set performance on the original dataset (59400+
to lie within [0, 1] after a small amount of uniform noise 100). As one would expect, the test-set performance of
is added to them to prevent potential problems caused bynix-nets on this synthetic task is indeed worse (57600+/-
point distributions or deterministic relationshipsin ttea.  200). However, it is not dramatically worse.

For each dataset and each algorithm, we performed tems a second synthetic task, we generated 12,671 samples
fold cross-validation, and recorded the log-likelihoods o from the network learned by the Independent Mixtures al-
the test sets given the resulting models. Figure 2 shows thgorithm during one of it cross-validation runs on the Bio
mean log-likelihoods of the test sets according to modelglataset. The test-set log-likelihood of the models learned

generated by our five network-learning algorithms, as welby the Independent Mixtures algorithm on this dataset was
as the standard deviation of the means. (Note that the log-



| I Bio | Astro |
Independent Mixtures || 33300 +/- 500 2746000 +/- 5000
Single-Gaussian Mixtureg{ 65700 +/- 200 2436000 +/- 5000
Pseudo-Discrete 59100 +/- 100|{ 3010000 +/- 1000
Tree 74600 +/- 300| 3280000 +/- 8000

Mix-Net 80900 +/- 300| 3329000 +/- 5000

Figure 2: Mean log-likelihoods (and the standard deviatioithe means) of test sets in a 10-fold cross-validation.

32580 +/- 60, while our primary mix-netlearning algorithm ways in which our method can be improved upon. We now
scored a slightly worse 31960 +/- 80. However, the net-briefly discuss a few of the more obvious possibilities for
works learned by the mix-net learning algorithm did notimprovement.

actually model any spurious dependencies between vari-

ables. The networks learned by the Independent Mixtureg 1 \ARIABLE GROUPING

algorithm were better only because the Independent Mix-

tures algorithm was given more time to learn each of itsThe mixture tables in our network include a certain degree

Gaussian mixtures. of redundancy, since the mixture table for each variable
models the joint probability of that variable with its paten
5 POSSIBLE APPLICATIONS rather than just the conditional probability of that vateab

given its parents. One possible approach for reducing the
Space restrictions prevent us from going into much de&mount of redundancyir!the network is to allow each node
tail on possible applications; for a more extended discus!O represent groupof variables, where each variable must
sion, see the tech report version of this paper (Davies anB€ represented in exactly one group. See the technical re-
Moore, 2000). The networks discussed here are triviallyPOrt version of this paper (Davies and Moore, 2000 for a
applicable to anomaly detection tasks in which all variable Slightly more extensive discussion.
are observed. They may be well-suited to compressing
datasets containing both discrete and real values (with theé.2 ALTERNATIVE STRUCTURE-LEARNERS
real values compressed lossily). It is also easy to modify
our greedy network-learning algorithm to learn networksSo far we have only developed and experimented with vari-
for classification tasks; the resulting networks would beations of one particular network structure-learning algo-
similar in structure to those generated by previous algofithm. There is a wide variety of structure-learning algo-

rithms (Friedman et al., 1997, 1998; Sahami, 1996), bufithms for discrete Bayesian networks (see, e.g., (Cooper
with more flexible parameterizations. and Herskovits, 1992; Lam and Bacchus, 1994; Heckerman

o _ . _ et al., 1995; Friedman et al., 1999)), many of which could
While it is possible to perform exact inference in somepq employed when learning mix-nets. The quicker and
kinds of networks modeling continuous values (e.g. (Drivergirtier of these algorithms might be applicable directly to
and Morrell, 1995; Alag, 1996)), general-purpose exaciearning mix-net structures. The more time-consuming al-
inference in arbitrarily-structured mix-nets with contin - 4qrithms such as hillclimbing can be used to learn Bayesian
ous variables may not be possible. However, inference ifatworks on discretized versions of the datasets; thetresul
these networks can be performed via stochastic samphng,g networks may then be used as hints for which sets of
methods (such as importance sampling or Gibbs Samp“ngbependencies might be worth trying in a mix-net. Such ap-

Other approximate inference methods such as variation%oaches have previously been shown to work well on real
inference or discretization-based inference are alsohwortyaiasets (Monti and Cooper, 1998b).

investigating.

6.3 ALTERNATIVE PARAMETER-LEARNERS
6 CONCLUSIONS/FUTURE RESEARCH

While the accelerated EM algorithm we use to learn Gaus-
We have described a practical method for learningsian mixtures is fast and accurate for low-dimensional mix-
Bayesian networks capable of modeling complex intertures, its effectiveness decreases dramatically as the num
actions between many continuous and discrete variableber of variables in the mixture increases. This is the
and have provided experimental results showing that th@rimary reason we have not yet attempted to learn mix-
method is both feasible and effective on scientific data withture networks with more than four variables per mixture.
dozens of variables. The networks learned by this algofurther research is currently being conducted on alternate
rithm and related algorithms show considerable potentiatlata structures and algorithms which with to accelerate
for many important applications. However, there are manyeEM in the hopes that they will scale more gracefully to
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