
Fast Fa
tored Density Estimation andCompression with Bayesian NetworksS
ott DaviesMay 2002CMU-CS-02-138
S
hool of Computer S
ien
eCarnegie Mellon UniversityPittsburgh, PA 15213Submitted in partial ful�llment of the requirementsfor the degree of Do
tor of Philosophy.Thesis Committee:Andrew Moore, ChairChristos FaloutsosJohn La�ertyTom Mit
hellNir Friedman, Hebrew UniversityCopyright

 2002 S
ott DaviesThis resear
h was supported by NSF grants DMS-9873442 and ACI-0121671.The views and
on
lusions
ontained in this do
ument are those of the author and should notbe interpreted as representing the oÆ
ial poli
ies, either expressed or implied, of Carnegie MellonUniversity or the National S
ien
e Foundation.

Keywords: Ma
hine learning, density estimation, Bayesian networks, graphi
almodels, Gaussian mixture models,
ompression, interpolating density trees,
ondi-tional density estimation

To my family | espe
ially my father, Donald.

iv

Abstra
tMany important data analysis tasks
an be addressed by formulatingthem as probability estimation problems. For example, a popular generalapproa
h to automati

lassi�
ation problems is to learn a probabilisti
model of ea
h
lass from data in whi
h the
lasses are known, and thenuse Bayes's rule with these models to predi
t the
orre
t
lasses of otherdata for whi
h they are not known. Anomaly dete
tion and s
ienti�
dis
overy tasks
an often be addressed by learning probability models overpossible events and then looking for events to whi
h these models assignlow probabilities. Many data
ompression algorithms su
h as Hu�man
oding and arithmeti

oding rely on probabilisti
 models of the datastream in order a
hieve high
ompression rates.In this thesis we examine several aspe
ts of probability estimation al-gorithms. In parti
ular, we fo
us on the automati
 learning and use ofprobability models based on Bayesian networks, a
onvenient formalismin whi
h the probability estimation task is split into many simpler sub-tasks. We also emphasize
omputational eÆ
ien
y. First, we provideBayesian network-based algorithms for losslessly
ompressing large dis-
rete datasets. We show that these algorithms
an produ
e
ompressionratios dramati
ally higher than those a
hieved by popular
ompressionprograms su
h as gzip or bzip2, yet still maintain megabyte-per-se
ondde
oding speeds on well-aged
onventional PCs. Next, we provide algo-rithms for qui
kly learning Bayesian network-based probability modelsover domains with both dis
rete and
ontinuous variables. We show howre
ently developed methods for qui
kly learning Gaussian mixture mod-els from data [Moo99℄
an be used to learn Bayesian networks modeling
omplex nonlinear relationships over dozens of variables from thousandsof datapoints in a pra
ti
al amount of time. Finally we explore a largespa
e of tree-based density learning algorithms, and show that they
an beused to qui
kly learn Bayesian networks that
an provide a

urate densityestimates and that are fast to evaluate.

A
knowledgementsI'd like to thank my advisor, Andrew Moore, for the guidan
e and en
ouragement he
onsistently provided throughout my stay at Carnegie Mellon | his insight, wit, andkindness greatly in
reased the quality of my resear
h, and of my time at CMU in gen-eral. I'd also like to thank my thesis
ommittee members | Andrew, Nir Friedman,John La�erty, Tom Mit
hell, and Christos Faloutsos | for providing valuable
om-ments and feedba
k on this thesis. Mu
h lively and useful dis
ussion was also providedby various members of Andrew's resear
h group (the \Auton Lab"), for whi
h I amgrateful. Many thanks are also due to Shumeet Baluja for our resear
h
ollaborationsduring my earlier years at CMU; while these
ollaborations were performed beforethe material in this thesis were developed, they helped provide the initial interest andexperien
e in probabilisti
 modeling that lead indire
tly to this thesis.I am deeply indebted to many friends at Carnegie Mellon for helping to makemy time there enjoyable. In parti
ular, I'd like to thank David Ro
hberg, AndrewWillmott, Robert O' Callahan, Ted Wong, Herbie Lee, and David Maltz | my house-mates throughout various parts of my stay | for all the interesting
onversation,home-
ooked meals, and moral support. Periodi

onta
t with old California friends,parti
ularly Brad Williams and Carrie King, also helped ward o� the o

asional Pitts-burgh gloom.Finally, I'd like to thank my family for all their love and support over the years: mymother Henriette; my brother Chris; my sister Juliette; my stepfamily Rae, Tania,and Vanessa; and espe
ially my father Donald, whose en
ouragement has been in-strumental in forming my te
hni
al interests and a major
ontributing fa
tor to mywell-being.

vi

Contents
1 Introdu
tion 11.1 Ba
kground: Bayesian networks . 11.2 Thesis Overview . 42 Bayesian Networks for Dis
rete Dataset Compression 72.1 Ba
kground: Compression Te
hniques 72.2 Using Bayesian networks for data
ompression 112.2.1 Learning Bayesian Networks from Complete Data 132.2.2 Experimental Results . 152.3 Data reordering and Dynami
 Bayesian Networks 172.3.1 Experimental results . 192.4 Compression With Network-Based Hu�man Coding 212.4.1 Hu�man Networks . 232.4.2 Learning Hu�man Networks 262.4.3 Experimental Results . 272.5 Con
lusions, Related Work, and Possible Extensions 283 Mix-Nets 333.1 Introdu
tion . 333.2 Mix-nets . 353.2.1 General methodology . 35vii

3.2.2 Handling
ontinuous variables 363.2.3 Handling dis
rete variables . 393.3 Learning mix-net stru
tures . 413.4 Experiments . 453.4.1 Algorithms . 453.4.2 Datasets and results . 483.5 Possible appli
ations for Mix-Nets . 513.5.1 Classi�
ation . 513.5.2 Anomaly dete
tion . 523.5.3 Inferen
e . 523.5.4 Data
ompression . 533.6 Con
lusions, Related Work, and Possible Extensions 544 Interpolating Conditional Density Trees 594.1 Introdu
tion . 594.2 Joint density estimators for density tree leaves 624.2.1 Constant leaf densities . 634.2.2 Gaussian leaf densities . 634.2.3 Exponential leaf densities . 664.2.4 Linear leaf densities . 684.2.5 Multilinear leaf densities . 714.3 Tree evaluation
riteria . 734.4 Tree-growing algorithms . 754.4.1 Bran
h variable sele
tion strategies 764.4.2 Split point sele
tion . 784.4.3 Pruning strategies . 794.4.4 Parameter smoothing . 814.5 Conditional density trees . 84viii

4.5.1 Strati�ed
onditional trees . 874.5.2 Using joint density trees
onditionally 904.5.3 Speeding up the
onditional evaluation of joint density trees . 924.5.4 Approximate
onditional evaluation of joint trees 944.6 Stru
ture-learning algorithm for Bayesian Networks using
onditionaldensity trees . 984.7 Marginal distribution
attening . 1044.8 Experimental results . 1104.8.1 Datasets and default parameters 1104.8.2 Conditional density trees: one-level (CART-style) vs. strati�ed 1124.8.3 Conditional density estimation: strati�ed trees vs. joint trees . 1174.8.4 Approximate
onditionalizing of joint trees for fast evaluation 1234.8.5 Network stru
ture-learning algorithms 1274.8.6 Marginal distribution
attening 1364.8.7 Density trees vs. global mixture models 1404.9 Con
lusions, Related Work, and Possible Extensions 1435 Con
lusions 1495.1 Thesis
ontribution summary . 1495.2 Possible avenues for further resear
h 151Bibliography 153A Supplemental experimental results 163A.1 Pruning, bran
h variable sele
tion, and bran
h threshold sele
tion . . 163A.2 \Swit
heroo" experiments . 167A.3 E�e
t of the greedy network-learning algorithm's MAXCHANGES pa-rameter . 171A.4 Diagnosti
 experiments on exponential-distribution density trees . . . 174ix

A.5 Preliminary experiments on using interpolating density trees for
las-si�
ation . 175

x

Chapter 1
Introdu
tion
1.1 Ba
kground: Bayesian networksSuppose we have a domain
onsisting of a set of N variables ~X = (X1; X2; : : :XN).For the moment, assume that ea
h variableXi is dis
rete | that is, that it
an take onsome �nite possible set of values. (A binary variable that
an only take on the values\true" or \false" is an example of su
h a variable.) Now suppose we wish to modelthe statisti
al relationships between these variables with a probability distributionP (X1; X2; : : : ; XN) that allows us to
al
ulate the probability that any given eventj will assign the values ~xj = (xj1; xj2; : : : ; xjN) to ~X. What sort of models might weemploy?The most general possible model to use in this situation would be a lookup table
ontaining one probability for every possible
ombination of values that
ould beassigned to ~X. However, when there are many variables, this table
an be extremelylarge | for example, if the domain
onsists of 30 binary variables, then this tablewould
ontain 230 (over a billion) probabilities. This
an be impra
ti
al for multiplereasons. First, even if the domain is known well enough that su
h a table
ould bespe
i�ed with perfe
t a

ura
y, there may be situations in whi
h we wish to be ableto answer questions su
h as \What is the probability that X2 is false and X5 is true?"without spe
ifying the values of all the other variables. To answer su
h questionswith a lookup table would require summing over all the table entries
onsistent withthe spe
i�ed variable values, and the number of su
h entries grows exponentially withthe number of variables in the domain. Se
ond, we will often need to learn the model1

P (~X) from a �nite set of previously observed events. In su
h s
enarios, the number ofevents we need to observe in order to a
quire a

urate estimates for the probabilitiesin the lookup table also grows exponentially with the number of variables.Bayesian networks (otherwise known as belief networks) are a popular method forrepresenting joint probability distributions over many variables. (See, e.g., [Pea88℄.)A Bayesian network
ontains a dire
ted a
y
li
 graphG with one vertex Vi in the graphfor ea
h variable Xi in the domain. The dire
ted edges in the graph spe
ify a set ofindependen
e relationships between the variables. De�ne ~�i to be the set of variableswhose nodes in the graph are \parents" of Vi. The set of independen
e relationshipsspe
i�ed by a given graph is then as follows: given the values of ~�i but no otherinformation, Xi is
onditionally independent of all variables
orresponding to nodesthat are not Vi's des
endants in the graph. This set of independen
e relationshipsallows us to fa
tor the joint probability distribution P (~X) in the following manner:P (~X) = NYi=1P (Xij ~�i);where P (Xij ~�i) is the
onditional probability distribution of Xi given ~�i.For example, Figure 1.1 shows the stru
ture of a Bayesian network for a some-what fa
etious medi
al domain with six binary variables. The network represents thefollowing fa
torization of the joint distribution:P (V; C;M;R;H; S) = P (V) � P (C) � P (M j V) � P (R j C;M) � P (H j C;M) � P (SjM)
C M

V

SHR

Martian
Death Flu

Spontaneous
Combustion

HeadacheRunny Nose

Common Cold

Visited
Mars Figure 1.1: An example Bayesiannetwork stru
ture.

In addition to its graph stru
ture, a Bayesian network also needs a set of tablesspe
ifying how ea
h variable's probability distribution depends on the values of itsparent variables in the graph. For example, for R, we might have the following table:2

C M P (R = 0 j C;M) P (R = 1 j C;M)0 0 0.95 0.050 1 0.50 0.501 0 0.10 0.901 1 0.02 0.98If in addition to G we also spe
ify P (Xij ~�i) for every variable Xi, then we havespe
i�ed a valid probability distribution P (~X) over the entire domain.Any joint probability distribution P (~X)
an be represented with a Bayesian net-work. In the
ase where no independen
ies between variables exist, the joint distribu-tion
an be modelled with a fully
onne
ted Bayesian network in whi
h ea
h variablehas all previous variables as its parents, where some arbitrary ordering of the vari-ables is used to determine pre
eden
e. For example, if this ordering is X1; : : : ; XN ,then the fully
onne
ted Bayesian network with respe
t to this ordering
orrespondsto the equation P (~X) = NYi=1P (XijX1; : : : ; Xi�1):The total number of independent parameters required for su
h a network would beidenti
al to the number of independent parameters in the lookup-table representationof P (~X) | for example, 2N � 1 in the
ase of N binary variables. However, whenindependen
ies exist between variables and the Bayesian network therefore has fewerparents per variable, the Bayesian network requires many fewer parameters to spe
ifythe joint distribution. For example, the Bayesian network in Figure 1.1 requires1+1+2+4+4+2 = 14 independent parameters, as opposed to the 63 that would berequired with a fully
onne
ted network. Thus, a sparsely
onne
ted Bayesian networkstru
ture essentially provides a method for breaking the problem of estimating ajoint distribution P (~X) into a set of
onditional probability estimation problemsP (Xij ~�i), ea
h of whi
h involves only a relatively small number of variables. Whenwe are attempting to learn P (~X) from a �nite set of datapoints, the fa
t that these
onditional distributions require many fewer total parameters means that the jointdistribution
an be learned more a

urately using the Bayesian network representationthan with the lookup-table respresentation. This
an be true even when the Bayesiannetwork stru
ture e�e
tively assumes independen
ies that are not a
tually present inthe domain, as long as the most important dependen
ies are modelled.There are other ways in whi
h joint probability distributions
an be split into prod-u
ts of fa
tors ea
h of whi
h involves only a few variables. For example, Markov ran-3

dom �elds (see [KS80℄ for a tutorial), also known as Markov networks (e.g. [Pea88℄),are undire
ted graphs whose stru
tures spe
ify fa
torizations of the formP (~X) = � CY
=1
(~S
);where
 2 f1; 2; : : : ; Cg denotes a parti
ular
lique in the undire
ted network, ~S
 � ~Xdenotes the set of variables asso
iated with the set of verti
es in
lique
,
(~S
)denotes a fun
tion over the variables in ~S
, and � is
onstant guaranteeing that theprobability distribution is normalized to 1. Markov networks and Bayesian networksare both spe
ial
ases of
hain graphs (see e.g. [Lau96℄) in whi
h dire
ted ar
s
on-ne
t various subgraphs, ea
h of whi
h is internally
onne
ted with undire
ted ar
s;the dire
ted graph over these undire
ted
omponents must be a
y
li
. There are
er-tain advantages to using graphi
al models that allow undire
ted ar
s, su
h as Markovnetworks, but there are notable disadvantages as well. In general, if we must learnthe appropriate
lique fun
tions
(~S
) from data, then
omputing the appropriatenormalization
onstant �
an be
ome
omputationally intra
table. One major ex
ep-tion is when the
liques are of reasonably small size and the model is de
omposable;in Markov networks, de
omposability
orresponds to the undire
ted graph being tri-angulated (see e.g. [Ber73℄). However, as it turns out, all Markov networks that arede
omposable
an also be modelled as Bayesian networks, although not all Bayesiannetworks
orrespond to de
omposable models. De
omposable models with reasonablysmall
lique sizes
an be used to eÆ
iently perform arbitrary probability inferen
e ex-a
tly | that is, su
h joint models P (~X)
an be used to eÆ
iently
ompute
onditionalprobabilities P (~Hj ~E) for arbitrary sets of variables ~H � ~X and ~E � ~X. However,throughout this thesis we will fo
us primarily on appli
ations for whi
h arbitrary in-feren
e is not ne
essary, in whi
h
ase our models need not be de
omposable. Finally,there are situations in whi
h Bayesian networks lend themselves more naturally to
ertain
omputational operations su
h as
ompression. Therefore we will restri
t ourattention in this thesis to Bayesian networks.1.2 Thesis OverviewIn Chapter 2, we provide Bayesian network-based algorithms for losslessly
ompress-ing large dis
rete datasets. First, we examine the use of Bayesian networks in
on-jun
tion with arithmeti

oding. We use ordinary Bayesian networks to
ompress4

datapoints on an individual basis, and dynami
 Bayesian networks to
ompress se-quen
es of datapoints in whi
h adja
ent datapoints are highly
orrelated. We alsoexamine modi�ed Bayesian networks in whi
h variables are automati
ally groupedtogether in order to improve the
ompression rates a
hievable with Hu�man
oding,whi
h is signi�
antly more
omputationally eÆ
ient than arithmeti

oding. We showthat these algorithms
an produ
e
ompression ratios dramati
ally higher than area
hieved by popular
ompression programs su
h as gzip or bzip2 while maintainingmegabyte-per-se
ond de
oding speeds on well-aged
onventional PCs.The rest of the thesis
on
entrates on pra
ti
al learning algorithms for Bayesiannetworks that model both dis
rete and
ontinuous variables. In Chapter 3, weshow how re
ently developed algorithms for qui
kly learning a

urate low-dimensionalGaussian mixture models from data [Moo99℄
an be used to learn joint distributionsover dozens of
ontinuous and dis
rete variables. We do so by using automati
allylearned Bayesian network stru
tures to
ombine mixtures learned from di�erent sub-sets of variables and datapoints. Finally, in Chapter 4, we explore and develop alarge spa
e of tree-based models for
onditional density estimation, and algorithmswith whi
h to learn them. As in Chapter 3, these density estimators are then usedin automati
ally learned Bayesian networks to model joint distributions over many
ontinuous and dis
rete variables. While the models in Chapters 3 and 4 have notyet been applied to
ompression problems, they were designed partially with thatpotential appli
ation in mind. In parti
ular, the models developed in Chapter 4 arequite fast to learn and evaluate, and have other properties that make them appealingfor
ompression.

5

6

Chapter 2
Bayesian Networks for Dis
reteDataset Compression
The re
ent explosion in resear
h on probabilisti
 data mining algorithms su
h asBayesian networks has been fo
used primarily on their use in diagnosti
s, predi
tionand eÆ
ient inferen
e. In this
hapter, we examine the use of Bayesian networksfor a di�erent purpose: lossless
ompression of large datasets. We present methodsfor automati
ally learning Bayesian networks and dynami
 Bayesian networks to usewith arithmeti

oding, as well as modi�ed Bayesian networks to use with Hu�man
oding. These algorithms often a
hieve signi�
antly better
ompression ratios thana
hieved with popular
ompression algorithms su
h as those used by gzip and bzip2.2.1 Ba
kground: Compression Te
hniquesIn this se
tion we provide a very brief introdu
tion to
ommon
ompression te
h-niques. For more
omprehensive des
riptions, see an introdu
tory textbook on
om-pression (e.g. [Say96℄, [WMB99℄).Di
tionary Te
hniquesPerhaps the most
ommonly used
lass of
ompression algorithms is the set of \di
-tionary te
hniques" used in general-purpose
ompression programs su
h as gzip.Di
tionary-based algorithms maintain di
tionaries
ontaining sequen
es of sour
esymbols. Whenever the sour
e
ontains a symbol sequen
e that appears in the di
tio-nary, that sequen
e's position in the di
tionary is en
oded rather than the individual7

symbols themselves. For example, the LZ77 algorithm [ZL77℄ and its derivatives main-tain a sliding window of the sour
e symbols en
oded in the immediate past; when anew sour
e symbol sequen
e is en
ountered that mat
hes a sequen
e
ontained inthe window, the sequen
e's position in the window and its length are en
oded. TheLZ78 algorithm [ZL78℄ and its derivatives su
h as LZW [Wel84℄ maintain tables ofpreviously seen sequen
es, and en
ode sour
e sequen
es via their positions in thetable.These algorithms
an be shown to a
hieve asympoti
ally optimal
ompressionrates [Ziv78℄; however, they may require the use of unmanageably large di
tionariesin order to do so.Arithmeti
 CodingArithmeti

oding (developed by Rissanen [Ris76℄ and Pas
o [Pas76℄; see Witten,Neal, and Cleary [WNC87℄ for a tutorial) allows sequen
es of symbols to be en
odednearly optimally without requiring the enumeration of all possible sour
e
ode se-quen
es of length k. Arithmeti

oding e�e
tively maps an entire sequen
e of sour
esymbols to a real number between 0 and 1. The arithmeti
 en
oder begins with arange R = [0; 1). As ea
h symbol in the sour
e sequen
e is en
oded, the
urrentrange R is subdivided into a partitions, where a is the number of possible values thesymbol
ould have taken on; the size of ea
h of these partitions is proportional to theprobability of symbol taking on the
orresponding value. The
urrent range is thenrestri
ted to the partition
orresponding to the sour
e symbol being en
oded.For example, suppose we have a sour
e sequen
e where ea
h sour
e symbol
antake on one of three values, s1, s2, and s3, with probabilities .1, .6, and .3, respe
tively.The range R = [0; 1) is initially split into the subranges [0; :1); [:1; :7); and [:7; 1). Ifthe �rst symbol to en
ode is s2, then the en
oder restri
ts R to [:1; :7). This range isthen further subdivided into the three subranges [:1; :16); [:16; :52); and [:52; :7). If these
ond symbol to en
ode is s3, then R is set to [:52; 7), and so forth. (See Figure 2.1for a diagram of this pro
ess.) When all the symbols in the sour
e sequen
e havebeen
oded, the en
oder outputs the binary representation of a number within its
urrent range R to a suÆ
ient pre
ision to disambiguate it from all numbers outsideof R. If the sequen
e en
oded is s1; : : : ; sk, then the number of bits required for thisdisambiguation is � logP (s1; : : : ; sk);plus one or a few more depending on the parti
ulars of the implementation. Taking8

the expe
tation of this quantity over all possible sour
e symbol sequen
es tells us thatthe expe
ted number of bits required to en
ode k symbols is approximatelyXs1;:::;sk�P (s1; : : : ; sk) logP (s1; : : : ; sk) = H(s1; : : : ; sk)where H(s1; : : : ; sk) is the entropy of P (s1; : : : ; sk). Sin
e this is the information-theoreti
 minimum average number of bits required to en
ode a sour
e sequen
ewith distribution P (s1; : : : ; sk) (see, e.g., [CT91℄), arithmeti
 en
oding approa
hesoptimality in the limit as k approa
hes in�nity.
s1

s2

s3

s1

s2

s3

s1

s2

s3

.1
0

.7

1

.1

.16

.52

.7

.52

.646

.7

.538 Figure 2.1: Restri
tion of the rangeR during arithmeti
 en
oding whileen
oding the symbol s2 followed bys3
As des
ribed above, arithmeti

oding appears to require the use of arbitrary-pre
ision arithmeti
 operations in order to manipulate the
urrent range R. However,it is possible to use limited-pre
ision integer arithmeti
 to approximate \perfe
t"arithmeti

oding. This typi
ally results in a negligible in
rease in the number ofbits required for the en
oding, and drasti
ally redu
es the
omputational expense of
ompression and de
ompression.One important advantage of arithmeti

oding is that it may be used in
onjun
-tion with any algorithm for modelling probability distributions over sour
e symbols,although some models
an be used more pra
ti
ally than others. Models that morea

urately predi
t the probability distribution of the next symbol as a fun
tion of pre-viously
oded symbols a
hieve better
ompression ratios. The problem of
ompressinga dataset thus redu
es to the problem learning an a

urate probabilisti
 model of thatdata.Hu�man CodingGiven a small dis
rete set of sour
e symbols and their asso
iated probabilities, asimple greedy algorithm developed by David Hu�man [Huf51℄
an be used to �nd9

an optimal
ode with whi
h to en
ode sour
e symbols on an individual basis. Thealgorithm is based on the insight that there must exist an optimal
ode su
h that thetwo least likely sour
e symbols are en
oded with bit patterns that are of equal lengthand di�er only in their last bit. The algorithm grows a binary tree in a \bottom-up" fashion by
onse
utively merging pairs of subtrees
orresponding to groups ofsour
e symbols; at any point the two groups with the lowest total probability aremerged. For example,
onsider the
oding problem in Figure 2.2. Assume we have�ve possible sour
e symbols with the probabilities shown in part (1) of the �gure.The two symbols with the least probability are B and D, with probabilities of .05 and.10 respe
tively. These two symbols are merged into a group with a total probabilityof .15; this group
orresponds to the depth-1 subtree at the bottom right of part (2)of the �gure. Now, the two groups with the least total probability are the group forB and D (total probability .15) and the group for C (probability .20), so these twogroups are merged; and so forth. The resulting sequen
e of group merges produ
esthe tree shown in part (2) of the �gure. The binary Hu�man
ode assigned to a givensour
e symbol is then determined by the sequen
e of left/right bran
h de
isions inthis tree required to rea
h the symbol, as shown in part (3) of the �gure. The averagenumber of bits required to en
ode a single sour
e symbol with this Hu�man
ode,assuming the symbol is drawn from a probability distribution a

ording to part (1)of the �gure, is 2 � :32 + 3 � :05 + 2 � :20 + 3 � :10 + 2 � :33 = 2:15:This is the lowest possible number of bits if ea
h sour
e symbol must be en
odedindependently with an integral number of bits.Unfortunately, if the probability for one parti
ular sour
e symbol is very high,Hu�man
oding
an be ineÆ
ient, as the
ode requires at least one bit for ea
h sour
esymbol en
oded (unlike arithmeti

oding). For example, if there are only two possiblesour
e symbols, ea
h will require one bit to en
ode, even if one value is vastly morelikely than the other. However, one
an alleviate this problem by grouping sequen
esof sour
e symbols together in blo
ks of k symbols and using Hu�man
oding on theseblo
ks rather than the individual sour
e symbols; as k in
reased, Hu�man en
odingwill approa
h optimality, although
are must taken to prevent unmanageably large
odebooks from resulting. In Se
tion 2.3.1, we will des
ribe a modi�ed Bayesiannetwork learning algorithm that will automati
ally �nd good groups of variables toen
ode as blo
ks in order to a
hieve
ompression performan
e that is usually very10

CAE

D B

0

1.0

.35

.15.20.32.33

.10 .05

0 0

0

1

1 1

1

.65

(1): Symbol probabilities

(2): Huffman tree

(3): Huffman code

A .32
B .05

D .10
E .33

C .20

ProbabilitySource Symbol

A 01
B 111
C 10
D 110

CodeSource Symbol

E 00Figure 2.2: An example of Hu�man
oding.
lose to that a
hieved by arithmeti

oding.2.2 Using Bayesian networks for data
ompressionBayesian networks are straightforward to use with arithmeti

oding. To en
ode are
ord j of the dataset with a Bayesian network B, one treats ea
h of the variablevalues in j as an individual \sour
e symbol". These values are passed to the arithmeti
en
oder in an order
onsistent with a topologi
al sort of B's verti
es. This way,the de
oder will have already de
oded the values of any given variable Xi's parentvariables by the time it needs to de
ode the value of Xi, and
an use the appropriateentry in Xi's probability table to determine the probability distribution of values forXi.Automati
ally-learned Bayesian networks have been used previously in
onjun
-tion with arithmeti
 en
oding in re
ent resear
h by Frey [Fre98℄. In Frey's work,�xed network stru
tures are employed in whi
h ea
h node has many parents; theprobability of ea
h node given its parents is paramaterized using logisti
 regression[MN83℄. In order to
apture
omplex nonlinear dependen
ies between variables, Frey11

uses networks with many hidden variables | that is, nodes that do not
orrespond toany observed values in the dataset being
ompressed. This
reates several problems.First, �nding the
orre
t probabilities for the tables in networks with hidden vari-ables is more diÆ
ult than it is in situations where all variables are always observed| one must resort to iterative pro
edures su
h as the Expe
tation Maximization algo-rithm [DLR77℄, or \EM", in order to obtain good estimates. Se
ond, even on
e theseparameters have been set and we wish to use the resulting network for
ompressionor de
ompression, we need to be able to estimate the probability distribution of thehidden variables given the observed variables, or vi
e versa. When there are manyunobserved variables, this problem is generally intra
table.Frey addresses these two problems by using the iterative \wake-sleep" algorithm[HDFN95℄ to adjust the parameters of a Helmholtz ma
hine [DHNZ95℄. A Helmholtzma
hine
onsists of a pair of Bayesian networks. The �rst of these networks, thegenerative network, has the observable variables
onditioned on the hidden variables;the se
ond, the re
ognition network, has the hidden variables
onditioned on the ob-servable variables. When en
oding an instan
e, the re
ognition network is used toindu
e a distribution over the hidden variables; the values of these hidden variablesare then
hosen. The generative network is then used in
onjun
tion with arithmeti
en
oding to en
ode both the hidden and observed variables. By itself, this method re-quired too many bits to
ode ea
h instan
e to be useful on the datasets used in Frey'sexperiments; the resulting
ompression rate was signi�
antly worse than gzip's. How-ever, it is possible for the en
oder to
onvey \side information" through its parti
ular
hoi
e of hidden variable values using a te
hnique
alled bits-ba
k
oding [HZ94℄. Byen
oding part of the dataset through this \side information"
hannel, it is possibleto obtain
ompression rates signi�
antly better than gzip's.Unfortunately, Frey's approa
h has several notable disadvantages. Its
omputa-tional
osts are prohibitive in situations where fast de
ompression is desired. Even ifthe Helmholtz ma
hines' parameters are not adjusted \on the
y" during both de
om-pression and
ompression as they are in Frey's work, many expensive
oating-pointmathemati
al operations must be performed for every node in the networks employed.Furthermore, the bits-ba
k
oding s
heme required to a
hieve adequate
ompressionratios is inherently blo
k-oriented, whi
h makes it unsuitable for situations in whi
hrandom a

ess to dataset items is required.We take a di�erent approa
h to using Bayesian networks for
ompression. Rather12

than using densely
onne
ted networks with �xed stru
tures and hidden variables,we employ sparsely
onne
ted Bayesian networks with no hidden variables. On
e asuitable su
h network has been found for the data, it
an perform
ompression andde
ompression qui
kly with no
oating-point operations. We now turn our attentionto the task of automati
ally learning su
h networks.2.2.1 Learning Bayesian Networks from Complete DataGiven a dataset D, we would like to automati
ally learn a Bayesian network B thata

urately models the probability distributions in D with a small number of networkparameters (i.e., entries in the probability tables asso
iated with the variables). Ifthere are no missing values or hidden variables inD| that is, if the data is \
omplete"| and if we are given B's stru
ture, then it is trivial to �ll in B's probability tablesto maximize the log-likelihood of the data: namely, we simply use the empiri
aldistributions appearing in D. However, even with
omplete data, the problem of�nding the best network stru
ture is NP-hard [Chi96℄. Learning a Bayesian networkis thus typi
ally done by using a sear
h pro
edure to �nd a network B that maximizes(or at least hopefully
omes
lose to maximizing) a s
oring fun
tion C(B;D). Apopular s
oring fun
tion is the Bayesian Information Criterion (BIC) [S
h78℄,C(B;D) = logP (D j B)� jBj � 0:5 logRwhere jBj is the number of independent parameters (probabilities) stored in the netand R is the number of re
ords in the dataset. Maximizing BIC
orresponds dire
tly tominimizing the number of bits required to store both (1) the parameters of the networkB to a reasonable level of pre
ision and (2) an eÆ
ient en
oding (su
h as arithmeti
en
oding) of D using the probability distribution entailed by B. Thus, the BIC isnaturally suited for �nding Bayesian networks that are good for
ompression. This\minimum des
ription length" (or MDL) approa
h has also been used for learningBayesian networks in
ases where
ompression is not ne
essarily the primary obje
tive[LB94℄.For the experimental results in the next se
tion, two algorithms for learningBayesian networks were used. The �rst algorithm uses a form of sto
hasti
 hill-
limbing over possible network stru
tures using the Bayesian Information Criterionas its s
oring fun
tion. AD-Trees [ML98℄ are used to speed up this sear
h by de
reas-ing the amount of time ne
essary to
al
ulate the dataset statisti
s required for the13

sear
h. (See [ML98℄ for details of the sear
h algorithm.)The se
ond algorithm, whi
h we designed for very large datasets, takes two sweepsthrough the dataset. In the �rst sweep, the algorithm
olle
ts the dataset statisti
srequired to measure the in
rease in BIC s
ore that would be a
hieved by adding anysingle ar
 to an empty Bayesian network stru
ture. This pro
ess requires O(N2 �(R + a2)) time, where N is the number of variables, R is the number of re
ords, anda is the maximum arity of the variables. Let I(Xi; Xj) denote the in
rease in BICs
ore a
hieved by adding an ar
 from Xi to Xj. This is proportional to the mutualinformation between Xi and Xj (see e.g. [CT91℄), minus a penalty term proportionalto the number of added parameters, and is thus symmetri
, i.e. I(Xi; Xj) = I(Xj; Xi).We then greedily grow a network stru
ture in whi
h ea
h node has at most
 parents,where
 is a user-de�ned parameter. This growth o

urs without referring to thedataset; the greedy algorithm naively assumes, for example, that if Xj and Xk arethe best
andidate parents for Xi based on I(Xi; Xj) and I(Xi; Xk), then fXj; Xkg isthe best parent set of size 2 for Xi. We omit the details here, but the algorithm is verysimilar to the greedy network-learning algorithm des
ribed later in Se
tion 3.3, as wellas to an algorithm previously developed to learn Bayesian networks for
lassi�
ation[Sah96℄. In the spe
ial
ase where
 is 1, this algorithm redu
es to a penalized versionof Chow and Liu's dependen
y-tree algorithm [CL68℄, and �nds a network with theoptimal BIC s
ore out of all networks in whi
h ea
h variable has at most one parent.On
e the network stru
ture has been determined, a se
ond sweep is then made overthe dataset to �ll in the probability tables of the resulting network; this takes O(N �(R + a
)) time.Sin
e the algorithm in this se
tion was originally developed, a more sensible andgeneral approa
h
alled the Sparse Candidate Algorithm [FNP99℄ has been developedfor qui
kly learning good network stru
tures over dis
rete variables with few passesthrough the dataset. While the Sparse Candidate algorithm does not apply dire
tlyto situations in whi
h the
onditional distributions used in the network
annot be
omputed qui
kly from sets of suÆ
ient statisti
s | su
h as the
onditional distribu-tions that will be used in Chapter 3 and Chapter 4 | it is dire
tly appli
able to thenetwork-learning task at hand in this se
tion, and would make a good repla
ementfor the algorithm employed here.
14

2.2.2 Experimental ResultsIn this se
tion, we examine the e�e
tiveness of using automati
ally learned Bayesiannetworks in
onjun
tion with arithmeti

oding in order to perform
ompression.Census datasetEa
h re
ord in this dataset
orresponds to a person; variables represent su
h thingsas the person's sex, o

upation, in
ome, et
. The dataset
onsists of 142,521 re
ords,ea
h of whi
h has twelve symboli
 values. The number of possible values ea
h variable
an assume varies between two and twelve.A verbose ASCII version of this dataset requires about 21 MB of disk spa
e; a morefrugal binary representation takes up 536 KB. gzip, a popular UNIX
ompressionutility employing the LZ77 algorithm, redu
es this dataset to 294 KB when usedin its \best-
ompression" mode. bzip2, a
ompression utility using the Burrows-Wheeler blo
k-sorting algorithm [BW94℄,
an
ompress a version of the �le down to220 KB (also when in \best-
ompression" mode). As their inputs, gzip and bzip2are given the dataset as a binary �le in whi
h ea
h variable value is en
oded in its ownbyte; be
ause these two programs are byte-oriented, this results in better
ompressionthan when the dataset is given to them in the more
ompa
t bit-oriented 536 KBrepresentation. This byte-oriented representation is used in the other experiments inthis
hapter as well, sin
e it also helps the
ompression ratios gzip and bzip2 onthose experiments.In
onjun
tion with the two Bayesian network learning algorithms dis
ussed above,we use a limited-pre
ision arithmeti

oding library written by Carpinelli et al. [CMN+95℄based on a paper by Mo�at et al. [MNW95℄. We modi�ed the library so it
oulden
ode to and de
ode from RAM when desired rather than only to or from disk; allof the de
oding speed results we will show later are based on de
ompressing fromRAM. The network-learning algorithm employing sto
hasti
 hill
limbing
ompressedthe
ensus dataset to 169 KB. This in
ludes the spa
e required to en
ode the learnednetwork stru
ture and all the
orresponding
onditional probability tables. The al-gorithm employs one of four di�erent en
oding methods for ea
h table, depending onthe number of non-zero entries and their relative probabilities. (We omit the tediousdetails.) With
, the maximum number of parents per node, set to two, the two-pass greedy algorithm
ompressed it to 171 KB. For
omparison, using arithmeti
15

en
oding in
onjun
tion with an empty Bayesian network (that is, one in whi
h nodependen
ies between variables are modelled) produ
es a 231 KB �le.Banking datasetThis dataset, a set of
ustomer pro�les from a Pennsylvania bank,
onsists of 6372re
ords, ea
h of whi
h
ontains 142 values. Real-valued variables were quantizedinto symboli
 variables taking on 16 values; however, some of the naturally symboli
variables were very high-arity (up to about 100 possible values), and these valueswere not
hanged. This quantized dataset took up 416 KB in raw binary form. gzip
ompressed the dataset down to 345 KB; bzip2, to 273 KB.Using a network learned by the greedy two-pass method in whi
h ea
h node had atmost one parent, arithmeti
 en
oding was able to represent the �le in 166 KB. (Withan empty Bayesian network, the �le was
ompressed to 240 KB | signi�
antly worsethan with one parent per node, but still better than gzip or bzip2.)EDSGC datasetThis dataset
onsists of 900,000 re
ords with 27 variables; ea
h re
ord represents angalaxy from the Edinburgh/Durham Southern Galaxy Catalogue Survey (EDSGC)[HDCM89℄. Variables in
lude the galaxy's position, magnitude, geometry, and soforth. All variables were quantized to sixteen values. A raw binary �le
ontainingthis quantized data requires 11.8 MB. gzip
ompresses the quantized dataset downto 6.9 MB; bzip2 to 5.6 MB.Sin
e there were many re
ords but a reasonably small number of variables, arandom sample of 50,000 re
ords was sele
ted and used to learn a Bayesian networkusing sto
hasti
 hill
limbing; on
e the network was learned from this sample, a �nalpass through the entire dataset was used to �ll in the network's probability tables.Allowing the sto
hasti
 hill
limbing to progress for 10,000 iterations resulted in anetwork that was able to
ompress the dataset to 4.8 MB. Using the greedy two-passalgorithm on the entire dataset to learn a network in whi
h ea
h node had at mostthree parents resulted in a 4.2 MB �le. (For
omparison, with an empty Bayesiannetwork, arithmeti
 en
oding produ
ed a 9.0 MB �le.)
16

Sloan datasetThis dataset is taken from a larger astronomi
al survey
urrently in progress. It
ontains approximately 3,080,000 re
ords with 49 variables; all
ontinuous variablesare quantized to sixteen values. The raw binary form of the quantized data takes 53.1MB. gzip
ompresses the data to 35.6 MB; bzip2 to 27.9 MB. Using the greedy two-pass algorithm on the entire dataset to learn a network with at most three parentsper variable results in a 23.9 MB �le.2.3 Data reordering and Dynami
 Bayesian Net-worksOn
e the algorithms des
ribed above learn a Bayesian network modeling a dataset,they use the network to
ompress ea
h item in the dataset independently of all theothers. Essentially, the algorithms are assuming that the items in the dataset areindependently and identi
ally distributed (or i.i.d.). In reality, datasets frequentlyviolate this assumption. Probability distributions exhibited in real-life data may shiftover time, either gradually or suddenly. Furthermore, it is quite often the
ase thatthe order in whi
h items happen to appear in the dataset is irrelevant. (Hen
e theterm \dataset".) It may be possible to signi�
antly improve
ompression performan
ein su
h
ases by reordering the data. One possible approa
h would be to lexi
ograph-i
ally sort one set of datapoints, and then en
ode the bits of other set of datapoints\for free" by using them to permute the previously sorted set before it is en
oded.The de
oder
ould then re
onstru
t the bits in the se
ond set of datapoints after de-
oding the �rst set by re
onstru
ting the permutation that must have been applied toits sorted version. While potentially interesting, su
h an approa
h would be
omplexto implement, and would not be able to exploit any preexisting dependen
ies betweenneighboring datapoints in the original dataset. We do not explore this avenue furtherin this thesis.Another method is to use adaptive
oding in whi
h the probabilisti
 model of thedata gradually shifts as data is pro
essed. We will dis
uss this approa
h further inSe
tion 2.5; for now, we simply note that adaptive
oding has disadvantages thatmake it unsuitable for some appli
ations. In parti
ular, updating the probabilisti
models during de
ompression may be undesirably time-
onsuming. Furthermore, in17

some situations we may wish to maintain
oarse-granularity random a

ess to thedata | for example, we may wish to be able to de
ompress all datapoints stored ina spe
i�
 disk blo
k without having to de
ompress any others. Adaptive
oding isdiÆ
ult to apply e�e
tively in su
h situations.Another approa
h is to expli
itly model
orrelations between
onse
utive data-points. Even if su
h
orrelations are not present in the original dataset, they
an be
reated by sorting the dataset. It may not be pra
ti
al to
ompletely sort very largedatasets, parti
ularly datasets too large to �t in main memory, merely for the pur-poses of in
reased
ompression performan
e. However, it may be possible to get somebene�t from the tri
ks mentioned above with mu
h less
omputational expense byinstead only sorting within relatively small blo
ks of the dataset, or by radix sortingonly on the values of a few variables.In this se
tion we examine the use of dynami
 Bayesian networks [DK88℄ to rep-resent dependen
ies between
onse
utive datapoints in order to in
rease
ompressionperforman
e. Dynami
 Bayesian networks are Bayesian networks that represent howa system evolves from one time step to another. A dynami
 Bayesian network
onsistsof two Bayesian networks. The �rst Bayesian network, the prior network, spe
i�esa distribution over the system's possible starting values. The se
ond network, thetransition network, spe
i�es the distribution over the system's variables in the nexttime step given the values of the variables in the
urrent time sli
e. For example,Figure 2.3 shows a dynami
 Bayesian network for a system with four variables. Part(a) shows the prior network, and part (b) shows the transition network. The top fournodes X1 through X4 in the transition network
orrespond to the variables' values atsome time t, while the bottom four nodes X 01 through X 04
orrespond to the variablesat some time t+ 1.When fa
ed with datasets that are not i.i.d. | either be
ause there are trendsin the data that
hange over time, or be
ause a formerly i.i.d. dataset has beenre-ordered to improve
ompression eÆ
ien
y | one natural approa
h is to treat thedataset as a time series and to learn a dynami
 Bayesian network that models thisseries. A greedy heuristi
 algorithm for learning dynami
 Bayesian networks in amanner similar to the two-pass algorithm des
ribed in Se
tion 2.2.1 was implemented.The algorithm learns a transition network in whi
h ea
h node representing a variablein datapoint j + 1 is
onditioned on at most
 parent nodes. Ea
h of these parentnodes
an be either a node representing a variable in the most re
ent dataset item that18

X X X X1 2 3 4

X X1

1

2

2

3

3

4

4

(a): Prior network

(b): Transition network

XX

X’ X’ X’ X’Figure 2.3: An example dynami
 Bayesian network,
onsisting of a prior network anda transition network.has been
ompletely
oded (that is datapoint j), or a node representing a previously
oded variable in the same dataset item we are
urrently
oding (datapoint j + 1).The algorithm does not bother learning any dependen
ies in the prior network, sin
ethey would be used only for
oding the very �rst dataset item. Again, we omit thedetails; similar previous resear
h exists on automati
ally learning dynami
 Bayesianstru
tures from data [FMR98℄.We used this automati
 Dynami
 Bayesian network learning algorithm to
ompressversions of the previously mentioned datasets in whi
h the re
ords were either left intheir initial positions or sorted lexi
ographi
ally.2.3.1 Experimental resultsCensus datasetLearning a dynami
 Bayesian network for this dataset in its natural ordering andthen using it for
ompression did no better than the analagous algorithm that usednon-dynami
 Bayesian networks: with
 set to a maximum of two parents per node,both algorithms produ
ed a 171 KB �le. It appears that the data is i.i.d., or at19

least that a given dataset item has little in
uen
e over the very next dataset item.However, if the dataset is sorted and then a dynami
 Bayesian network is learnedon this sorted dataset instead, the resulting
ompressed �le is only 18.6 KB in size.Sin
e there are 142,521 items in the dataset, this works out to an average of only1.04 bits per item, in
luding the
ost of en
oding the network. As it turns out, thereare only roughly 14,000 unique items in the dataset | most items in the dataset aredupli
ated many times. A spe
ial-purpose algorithm for dealing with exa
t dupli
atesor a delta-
oding s
heme might fare somewhat better in this
ase, but the dynami
Bayesian network te
hnique appears to handle it quite well without any su
h spe
ial-
asing. (For purposes of
omparison, gzip was able to
ompress the sorted datasetdown to 36.2 KB, while bzip2
ompressed it to 58.2 KB.)Banking datasetAs in the
ensus dataset, using an automati
ally learned dynami
 Bayesian networkon this dataset in its natural ordering did not improve
ompression performan
e overusing the analagous non-dynami
 network. Sorting the dataset and then modelingit with a dynami
 Bayesian network performed only very slightly better, redu
ingthe resulting �le size from 166 KB to 163 KB. This dataset is mu
h more \sparse"than the
ensus dataset in that it has fewer items and many more variables; someof its variables are also very high-arity. As a result, sorting only
reated signi�
antinter-item dependen
ies in the �rst few variables used for the sort, and did not makeit any easier to model the others. (Sorting did not signi�
antly improve gzip's orbzip2's performan
e in this
ase either.)EDSGC datasetUsing an automati
ally learned dynami
 Bayesian network on this dataset dramati-
ally improved
ompression performan
e over its non-dynami

ounterpart: 2.6 MBrather than 4.2 MB. Thus, this dataset is
learly not i.i.d. even its natural form. Asit turns out, ea
h datapoint in
ludes variables that en
ode a position in the sky, andthe dataset was largely ordered by these position variables, so the position values ofadja
ent dataset items are highly
orrelated.Sorting this dataset using its natural variable ordering improves
ompressionslightly (2.5 MB rather than 2.6 MB), and slightly improves the performan
e of gzip20

(6.5 MB vs. 6.9 MB) and bzip2 (5.5 MB vs. 5.6 MB) as well.Sloan datasetAs in the EDSGC dataset, using an automati
ally learned dynami
 Bayesian networkon the Sloan dataset signi�
antly improved
ompression performan
e: 16.1 MB, asopposed to 23.9 MB for the non-dynami
 Bayesian network. In this
ase, however,sorting the dataset lexi
ographi
ally a
tually
aused the dynami
 Bayesian networksto perform slightly worse (17.1 MB), perhaps be
ause the variables that were moststrongly
orrelated between adja
ent dataset items in the unsorted version were notthe �rst variables used for the lexi
ographi
 sort. Sorting did slightly in
rease theperforman
e of gzip (34.0 MB vs. 35.6 MB) and bzip2 (27.7 MB vs. 27.9 MB).Summary of experiments with Bayesian network-based arithmeti

odingThe results of this se
tion are summarized in Table 2.1 (along with the results fromSe
tion 2.2.2 for
omparison). Depending on whi
h dataset is being
ompressed andwhether this dataset has been sorted,
ompression based on using dynami
 Bayesiannetworks in
onjun
tion with arithmeti
 en
oding was able to produ
e �les that were40-60% smaller than produ
ed by gzip, and 20-60% smaller than produ
ed by bzip2.Sorting the datasets sometimes in
reased
ompression performan
e | dramati
allyso in the
ase of the Census dataset.2.4 Compression With Network-Based Hu�manCodingThe algorithms des
ribed above have proven useful for long-term �le
ompressiontasks where de
ompression speed and random a

ess requirements are not
ru
ial.However, if we hope to use
ompression in more speed-
riti
al appli
ations, su
h asspeeding up data analysis by
ompressing data into memory rather than leaving iton disk, we need fast de
ompression of random dataset items. Arithmeti

odingis somewhat
omputationally expensive; furthermore, no random a

ess is possiblewithin a sequen
e of bits en
oded with a single appli
ation of arithmeti

oding, sin
ethere is no well-de�ned bit position where the en
oding of one value ends and another21

Census Banking EDSGC Sloan# dataset items 142500 6370 900000 3.08 M# variables 12 142 27 49variable arity 2-12 2-100 2-16 2-16Un
omp. binary 536 KB 416 KB 11.8 MB 53.1 MBgzip 294 KB 345 KB 6.9 MB 35.6 MBbzip2 220 KB 273 KB 5.6 MB 27.9 MBBayes Net 169 KB 166 KB 4.2 MB 23.9 MBDyn. Bayes Net 171 KB 166 KB 2.6 MB 16.1 MBSort + gzip 36 KB 343 KB 6.5 MB 34.0 MBSort + bzip2 58 KB 272 KB 5.5 MB 27.7 MBSort + Dyn. BN 19 KB 163 KB 2.5 MB 17.1 MBTable 2.1: Compression with Bayesian networks and arithmeti

oding: experimentalresults summarybegins. It is possible to separate re
ords or variables into independently
oded blo
ks,but sin
e arithmeti

oding requires an extra one or two bits at the end of ea
h blo
k,this
auses arithmeti

oding to lose some of its
ompresssion performan
e (althoughnot too mu
h).In
ontrast, Hu�man
oding uses relatively inexpensive table lookups to performen
oding and de
oding, and ea
h
oded value naturally has a well-de�ned start andend position in the resulting bitstream. This makes Hu�man-based
oding attra
-tive for appli
ations requiring fast de
ompression and/or random a

ess. However,as mentioned previously, Hu�man-based de
oding provides poor
ompression per-forman
e when applied to probability distributions in whi
h some values are veryprobable. It is possible to group variables together to over
ome this problem, butthen the tables required for en
oding and de
oding
an be
ome prohibitively large iftoo many variables are pla
ed in one group. Additionally, if one variable is highly
or-related with many other variables, it may be advantageous to have the value of thatvariable
hange the
oding s
hemes asso
iated with several variable groups, withoutthat variable's value a
tually being
oded in the
ompressed representations of all ofthe groups it in
uen
es.
22

x1 x4 x5

x6

Group 1
Group 2

Group 3

x3

x2

x1 x4 x5

x6

x3

x2

Group 1 Group 2

Group 3

A B C

Figure 2.4: An example Hu�man network (A), along with its
orresponding variable-based (B) and group-based (C) Bayesian networks.2.4.1 Hu�man NetworksWe address these issues by using a modi�ed Bayesian network | referred to hereafteras a Hu�man network for
onvenien
e | in whi
h ea
h node a
tually models a groupof variables in the dataset rather than an individual variable. Ea
h group of variablesis Hu�man
oded as a single unit. For example, if a group
ontains three binaryvariables, then that group is Hu�man
oded as if it were a single variable taking oneight possible values; ea
h of these eight values is assigned a probability equal to thejoint probability of the
orresponding
ombination of values for the original threebinary variables.In order to take into
onsideration dependen
ies between variables residing indi�erent groups, we allow the probability distribution over the possible values for ea
hgroup to be
onditioned on the values of other variables. For example, in Figure 2.4A,six variables have been pla
ed into three groups. The joint probability distribution ofall the variables in Group 3 (namely, variables x2 and x6) is
onditioned on the valuesof variables x3; x4; and x5. This
onditioning is represented in the graph by ar
s fromx3; x4, and x5 to Group 3. Assuming all the variables are binary, this means thatGroup 3 requires eight Hu�man tables | one for ea
h possible
ombination of valuesto x3; x4 and x5. Ea
h of these tables then has four entries | one for ea
h possible
ombination of x2 and x6. Note, however, that Group 3 is not
onditioned on thevalue of x1, despite the fa
t that x1 is in the same group as x4 and x5. This added
exibility
an help in
ertain situtations | for example, if x2 and x6 are independentof x1 given x4 and x5, then
onditioning Group 3 on the value of x1 would double thenumber of Hu�mann tables required by Group 3 without in
reasing Group 3's
odingeÆ
ien
y. 23

The Hu�man network
an be thought of as a Bayesian network over the originalvariables in whi
h all variables in the same group are
ompletely
onne
ted (e.g.,Figure 2.4B). This representation tells us what dependen
ies between variables arebeing modeled by the
oding s
heme asso
iated with the Hu�man network. At thesame time, the Hu�man network
an be thought of as a Bayesian network over thegroups themselves (e.g., Figure 2.4C), where an ar
 exists from group G to groupG0 if and only if an ar
 exists from at least one variable in G to the group G0 inthe Hu�man network. This view summarizes how the
oding groups in the Hu�mannetwork are
onne
ted, thus telling us whi
h groups of variables need to be de
odedbefore other groups
an be de
oded.We use a given Hu�man network to perform
ompression as follows. First, we takeone pass through the dataset to
ompute
ontingen
y tables for ea
h of the groupsin the network. The
ontingen
y table for a given group with a set of variables Vand set of
onditioning variables P
ounts how many times ea
h possible
ombinationof values for V SP o

urs in the dataset. These
ontingen
y tables are representedsparsely so that
ombinations that never a
tually o

ur in the dataset are neverexpli
itly represented.On
e these
ontingen
y tables have been
al
ulated, we build the Hu�man tablesfor all of the groups in the network. If we're
ompressing to a �le, we en
ode thesetables at the beginning of the �le so they
an be extra
ted later for de
ompression.(We omit the details.) Next, we en
ode all of the re
ords. To en
ode a re
ord, ween
ode the variable groups in some order
onsistent with a topologi
al sort of thegroups in the Hu�man network. When en
oding any given group, we use the valuesof the group's
onditioning variables to sele
t the appropriate Hu�man table, andthen output the bits in the entry
orresponding to the values of the group's variables.De
oding is performed in an analogous manner.Compression and De
ompression Performan
eWe dis
uss how to automati
ally learn good Hu�man networks in the next se
tion.But �rst, let us brie
y dis
uss the
ompression performan
e of manually spe
i�ednetworks on a few syntheti
 datasets in order to illustrate situtations where groupingvariables together makes sense versus situations where adding ar
s between groupsmakes sense.Dataset 1
ontains 100,000 re
ords with 32 binary variables. The variables are24

all independent of ea
h other, and ea
h variable has a probability of .2 of being setto zero and .8 of being set to one. In su
h a dataset, a Hu�man network with ea
hvariable in its own individual group will not
ompress the data at all, regardless ofwhat ar
s are in the network. However, if variables are grouped together, then some
ompression
an be a
hieved. Simply pairing the variables together in groups of twoallows the �le size to be redu
ed by 25 per
ent; similar results are a
hieved by usinggroups of four or eight variables. If we try putting too many variables in a group,on the other hand, su
h as sixteen, the Hu�man tables begin requiring too manybits to spe
ify, and the �le size in
reases. The following table shows the
ompressionperforman
e of four di�erent Hu�man networks on this dataset in whi
h the variablesare pla
e in groups of 2, 4, 8, or 16. We also provide results for gzip and bzip2 forpurposes of
omparison.Dataset 1 Un
ompressed gzip bzip2 Hu�man(2) Hu�man(4) Hu�man(8) Hu�man(16)401 KB 310 KB 331 KB 313 KB 297 KB 295 KB 396 KBDataset 2
ontains 100,000 re
ords with 32 variables, ea
h of whi
h
an take on32 values. The �rst variable randomly takes on one of its 32 possible values withuniform probability. Ea
h other variable is then independently set at random toeither be indenti
al to the �rst variable (with probability .5) or to be di�erent fromthe �rst variable (with probability .5). In the latter
ase, its value is
hosen withuniform probability from the remaining possible values. The �rst variable has astrong
orrelation with all other variables in the dataset, so it helps to have thesevariables either in the same group as the �rst variable or in groups
onditioned onthe �rst variable. However, only a limited number of variables
an be put into thesame group as the �rst variable without making the Hu�man table for that groupprohibitively expensive, so most of the variables must lie in other groups. Therefore,the Hu�man network we use for this dataset simply has every variable in its owngroup, with all groups
onditioned on the �rst variable.Dataset 2 Un
ompressed gzip bzip2 Hu�man2.00 MB 1.92 MB 1.87 MB 1.42 MBFinally, dataset 3
ontains 100,000 re
ords with 40 variables, ea
h of whi
h
antake on 4 values. These variables have been randomly arranged into families of fourvariables. Within ea
h family, the �rst variable is
hosen at random; ea
h othervariable in the family is assigned a value identi
al to the value of the �rst variable inthe family with probability .9, and to a random di�erent value with probability .1.25

If we
ompress this dataset with a Hu�man network in whi
h ea
h variable is in itsown group and in whi
h the dependen
ies between the variables in the dataset area

urately modeled with ar
s between these variables, the network
ompresses thedata by about 30 per
ent. On the other hand, if we use a Hu�man network in whi
hthe variables are simply put in groups of 4
orresponding to the families of
onne
tedvariables in the �rst network, then we
an
ompress the dataset by over a fa
tor of2. Even though the �rst network in a sense more a

urately re
e
ts how the datawas generated, it su�ers from the fa
t that ea
h of the individual variables requiresat least 1 bit to en
ode even if that variable is highly predi
table given its parentvariable. It is interesting to note that gzip and bzip2 fail to
ompress this datasetat all.Dataset 3 Un
ompressed gzip bzip2 Hu�man(ar
s) Hu�man(groups)1.00 MB 1.00 MB 1.01 MB 685 KB 486 KB2.4.2 Learning Hu�man NetworksThe problem of automati
ally �nding e�e
tive Hu�man networks to use for
ompres-sion is very similar to the problem of �nding maximum-BIC Bayesian networks, andis almost
ertainly at least as diÆ
ult. Therefore, as in the
ase of learning Bayesiannetworks, we must rely on heuristi
 sear
h te
hniques. We have not extensively ex-plored possible sear
h algorithms for �nding good Hu�man networks; however, wehave implemented a relatively simple multiple-restart sto
hasti
 hill
limbing algo-rithm. At ea
h step during a hill
limbing run, the sear
h algorithm
onsiders makingone of the following
hanges to its
urrent Hu�man network:� Add an ar
 from a randomly sele
ted variable to a randomly sele
ted group, orremove the ar
 if one already exists� Move a variable from its
urrent group to a randomly sele
ted groupIf the
hange under
onsideration would
reate a
y
le in the Hu�man network,then it is immediately reje
ted and another
hange is randomly
onsidered. Oth-erwise, the algorithm evaluates the resulting network and
ompares its estimated
ompression performan
e to the estimated
ompression performan
e of the
urrentworking network. A good network minimizes the total number of bits required to:(1) en
ode the network itself, and (2) en
ode the data with the network. Both of26

Arithmeti

oding Hu�man
oding (no groups) Hu�man network w/groupsCensus 169 KB, 0.54 MB/se
 232 KB, 1.0 MB/se
 171 KB, 1.9 MB/se
Banking 166 KB, 0.49 MB/se
 222 KB, 0.7 MB/se
 179 KB, 1.1 MB/se
Astro1 4.2 MB, 0.50 MB/se
 4.8 MB, 1.0 MB/se
 4.3 MB, 2.2 MB/se
Astro2 23.9 MB, 0.31 MB/se
 28.1 MB, 0.43 MB/se
 24.1 MB, 1.3 MB/se
Table 2.2: Experimental results for arithmeti

oding vs. Hu�man networksthese terms
an be estimated a

urately from the Hu�man trees asso
iated with thegroup nodes on
e we have
omputed them. An important point to note about theevaluation of the network is that it is lo
al: that is, if we
hange one part of theHu�man network, we do not need to re
al
ulate the
ontributions of the other parts,sin
e they remain the same. When the algorithm tries more than some user-spe
i�ednumber of
hanges to the network stru
ture in a row with no improvement, the al-gorithm restarts another hill
limbing run with another initial network stru
ture. As
urrently implemented, this algorithm requires many passes through the dataset; forlarge datasets, we use a randomly sele
ted sample of datapoints rather than the entiredataset in order to maintain reasonable speed.2.4.3 Experimental ResultsWe use multiple-restart hill
limbing over Hu�man networks in order to �nd good
oding networks for the four datasets previously examined. The starting point of thehill
limbing algorithm is a Hu�man network with ea
h variable in its own group; thisinitial Hu�man network may either be empty (i.e.,
ontain no ar
s) or
ontain ar
s
orresponding to those learned by the Bayesian network-learning algorithms used inSe
tion 2.2.2. On
e the algorithm settles on a \good" network, we measure its perfor-man
e both in terms of
ompressed �le size (as we did in Se
tion 2.2.2) and in terms ofhow fast it is able to perform de
ompression on en
oded representations of the data inmemory. Speed is measured in terms of the number of bits of un
ompressed data de-
oded per se
ond on a 450 MHz Pentium II. We
ompare the performan
e of Hu�mannetworks learned via our sto
hasti
 hill
limbing pro
edure with (1) the performan
eof the Bayesian network-based arithmeti

oding approa
h from Se
tion 2.2.2, and(2) the performan
e of Hu�man networks that employs the same network stru
turesas the
orresponding Bayesian network-based arithmeti

oders, with ea
h variable
oded in its own group. The results are shown in Table 2.2.27

The results show that naively using Hu�man
oding with the Bayesian networkslearned in Se
tion 2.2.2 results in signi�
antly worse
ompression rates than arith-meti

oding { in some
ases, worse than gzip or bzip2 (see Table 2.1). Furthermore,it is often not too mu
h faster than arithmeti

oding. However, when variables aregrouped together in Hu�man network
oding groups, the
ompression rates
omemu
h
loser to those a
hieved with arithmeti

oding | to within 1%-8%. Further-more, as a side e�e
t, de
oding speeds be
ome sign�
iantly faster when the variablesare pla
ed in
oding groups sin
e there is less exe
ution overhead per variable. Theresulting speeds were 2-4 times faster than arithmeti

oding.2.5 Con
lusions, Related Work, and Possible Ex-tensionsSo far, we have only
ompared the algorithms developed in this
hapter against gzipand bzip2, and the primary metri
 for
omparison used is the resulting
ompres-sion rate. While these results are en
ouraging, more thorough
omparisons versusdi
tionary-based
ompression algorithms are warranted, parti
ularly in (1) observingthe e�e
ts of
hanging the di
tionary size and
oding granularity of the di
tionary-based algorithms, and (2)
omparing the relative speeds of the algorithms. Other\bla
k box"
ompression algorithms worth
omparing against in
lude predi
tion bypartial mat
hing (PPM) [CW84℄, whi
h uses a variable-length
ontext over previousbytes to probabilisti
ally predi
t the next byte, and dynami
 Markov
ompression(DMC) [CH87℄ whi
h automati
ally learns �nite-state models of the datastream.Hu�man en
oding allowed us to a
hieve mu
h faster de
ompression speeds thanwith arithmeti

oding at nearly the same
ompression rates, but it is still signi�
antlyslower than gzip or bzip2. The Hu�man
oder used in the experiments throughoutthis
hapter was a naive implementation that performed de
oding on a bit-by-bitbasis using binary trees. More eÆ
ient algorithms for Hu�man
oding exist, su
h as
anoni
al Hu�man
oding [HL90℄. We have performed preliminary tests with a simpleimplementation of
anoni
al Hu�man
oding; de
oding speed was indeed in
reased bya further 10-20%. This isn't terribly dramati
, but additional optimization may stillbe possible; a fair amount of other previous resear
h has been performed on makingHu�man
oding eÆ
ient ([CKP85℄, [Sie88℄, [MT97℄).28

All the experimental results for the Bayesian network-based
ompression algo-rithms presented in this
hapter have required at least two passes through the dataset.Additionally, on
e a network was learned from the dataset, it was kept �xed through-out the subsequent
ompression of that dataset | that is, the model used for
om-pression was stati
. There are advantages to this approa
h: namely, it is possible tomaintain random a

ess to small blo
ks of data, and the
omputational
ost of
om-pressing or de
ompressing any given dataset item is relatively small on
e the modelhas been learned and �xed. However, there are some situations in whi
h it may bedesirable to take a single pass through the data, su
h as when it is stored on mediathat requires long a

ess times. Furthermore, if the probability distributions exhib-ited by the data
hange throughout the dataset, adaptive
ompression algorithms
ana
hieve signi�
antly better
ompression rates that stati
 algorithms. In su
h situa-tions, it may be better to use an adaptive
ompression algorithm that dynami
allyadjusts its model of the data during
ompression.Frey [FHD96℄ breaks the dataset into blo
ks; after ea
h blo
k is en
oded or de-
oded, the parameters of the network are adjusted using the wake-sleep algorithm.When attempting to learn a network with more
ompli
ated
onditional probabil-ity distributions and an unknown stru
ture, however, things be
ome somewhat more
ompli
ated. How do we maintain the statisti
s used by the Bayesian network whileits stru
ture is being
hanged on the
y? If the
urrent network does not model anydependen
ies between variables X and Y , for example, how will we ever noti
e thatsu
h a dependen
y exists in the data?Friedman and Goldszmidt [FG97℄ address this problem by maintaining a set offrontier networks that ea
h di�er from the
urrent network by one ar
. When it isdetermined that one of these frontier networks is better than the
urrent network,the
urrent network is repla
ed with that frontier network, and a new set of frontiernetworks are generated. The statisti
s of these new frontier networks are then updatedas more data is pro
essed, and so forth. Relatively simple adjustments to the BayesianInformation Criteria s
oring fun
tions are made to a

ount for the fa
t that not allstatisti
s have been derived from the same number of data points. This te
hnique
ould easily be applied to adaptive
ompression with sparsely
onne
ted Bayesiannetworks.Extending su
h adaptive methods to work with dynami
 Bayesian networks wouldbe straightforward. This
ombination may be parti
ularly useful for handling data29

ontaining both short-term and long-term variations in its distributions. The grad-ual
hanges in the networks' parameters and stru
ture would allow them to better
apture the long-term
hanges; meanwhile, the expli
it modelling of dependen
iesbetween immediately adja
ent datapoints may allow the model to tra
k short-term
orrelations more e�e
tively than possible with adaptive
oding over nondynami
Bayesian networks.There are a wide variety of ways in whi
h Bayesian network stru
tures
an belearned, and in whi
h the
onditional probability distributions at their nodes
an beexpressed. For example, Frey's work [Fre98℄ uses highly
onne
ted networks in whi
hea
h node has a fairly restri
ted
onditional probability distribution. On the otherhand, the algorithms used in this
hapter generate networks with very sparse
onne
-tivity, but in whi
h the nodes have unrestri
ted
onditional probability distributionsrespresented in full tabular form | that is, the probability distribution over ea
hvariable's possible values is re
orded seperately for every possible
ombination of val-ues that variable's parent variables
an take on. It would be interesting to
omparethe relative e�e
tiveness of these two approa
hes, both in terms of
ompression ratesand
omputational feasability.It is possible to
ompromise between the unrestri
ted
onditional probability dis-tribution tables used here and the �nite-parameter distributions used in work su
has Frey's | namely, by learning \lo
al stru
ture" within the
onditional probabilitydistribution for ea
h node [FG96b℄. For example, one
an use a de
ision tree for ea
hvariable representing how that variable's distribution depends on parti
ular
ombi-nations of its parent variables' values, without exhaustively enumerating all possible
ombinations of the parent variables' values. This may allow us to
ondition somevariables' distributions on the values of many other variables in a
ompa
t mannerwhile still
apturing some of the
omplexities in how these other variables' e�e
ts
ombine. (Essentially any supervised ma
hine learning method that is
apable ofreturning a probability distribution over a \
lass" variable's value when given thevalues of other predi
tive features
an be used in this
ontext in pla
e of de
isiontrees.) In Chapter 4, we will explore more general tree-based representations of
on-ditional probability distributions. These representations
ould easily be used for the
ompression tasks addressed in this
hapter.So far, we have restri
ted our attention to datasets in whi
h all variables are dis-
rete. Of
ourse, many datasets have real-valued variables instead, or a mixture of30

real-valued and symboli
 variables. How should we deal with
ompressing the realvalues in su
h datasets? Sin
e it is impossible to represent arbitrary real values per-fe
tly in any �nite number of bits, we must settle for an approximate representation.We might imagine attempting to
ompress real values losslessly up to the limits ofa given ma
hine's native
oating-point format; however, if the least signi�
ant bitsin these numbers are largely noise, they will be (1) hard to
ompress e�e
tively, and(2) useless for most appli
ations anyway. Thus, datasets with real-valued variablestypi
ally ne
essitate the use of lossy
ompression te
hniques that are not guaranteedto perfe
tly re
onstru
t the original un
ompressed data.Throughout the next two
hapters, we will examine algorithms that learn Bayesiannetworks modeling probability distributions over both dis
rete and
ontinuous vari-ables. While we have not yet applied these algorithms to the lossy
ompression ofreal-valued datasets, they were designed partially with this appli
ation in mind. Thisis parti
ularly the
ase with the Bayesian network-based models des
ribed in Chap-ter 4, whi
h
an be evaluated qui
kly and have other properties that make them
onvenient for
ompression.A system
alled SPARTAN [BGR01℄ was re
ently developed for lossily
ompress-ing datasets by using networks of CART-like de
ision and regression trees. (SPAR-TAN was developed after the material in this
hapter and Chapter 3 was published([DM99℄, [DM00℄) and largely
on
urrently with the material developed in Chapter 4.)There are
onsiderable di�eren
es between SPARTAN's approa
h and the approa
hto
ompression that would most naturally result from the material in the next two
hapters, however; see Se
tion 4.9 for details.

31

32

Chapter 3
Mix-Nets
3.1 Introdu
tionBayesian networks are most
ommonly used in situations where all the variables aredis
rete, largely be
ause it is diÆ
ult to model
omplex probability densities over
ontinuous variables, and diÆ
ult to model intera
tions between
ontinuous and dis-
rete variables. When Bayesian networks with
ontinuous variables are used, the
ontinuous variables are typi
ally modeled with simple parametri
 forms su
h asmultidimensional Gaussians. Some resear
hers have re
ently investigated the useof more
ompli
ated
ontinuous distributions within Bayesian networks; for example,weighted sums of Gaussians have been used to approximate
onditional probabilitydensity fun
tions [DM95℄. Unfortunately, su
h
omplex distributions over
ontinu-ous variables are usually quite
omputationally expensive to learn. If an appropriateBayesian network stru
ture is known beforehand, then this expense may not be tooproblemati
, sin
e only N
onditional distributions must be learned. On the otherhand, if the dependen
ies between variables are not known a priori and the stru
turemust be learned from the data, then the number of
onditional distributions thatmust be learned and tested while a stru
ture-learning algorithm sear
hes for a goodnetwork
an be
ome unmanageably large.However, very fast algorithms for generating
omplex joint probability densitiesover small sets of
ontinuous variables have re
ently been developed. In parti
ular,mixtures of Gaussians
an be �tted to data very qui
kly using an a

elerated EMalgorithm that employs multiresolution kd-trees [Moo99℄. In this
hapter, we pro-33

pose a kind of Bayesian network in whi
h low-dimensional mixtures of Gaussiansover di�erent subsets of the domain's variables are
ombined into a
oherent jointprobability model over the entire domain. The network is also
apable of modelling
omplex dependen
ies between dis
rete variables and
ontinuous variables withoutrequiring dis
retization of the
ontinuous variables. In Se
tion 3.2, we des
ribe thetype of parameterizations employed in our networks' nodes, and how they are learnedfrom data given a �xed Bayesian network stru
ture. In Se
tion 3.3, we des
ribe aneÆ
ient heuristi
 algorithm for automati
ally learning the stru
tures of our Bayesiannetworks from data. In se
tion 3.4, we provide experimental results illustrating thee�e
tiveness of our methods on two real s
ienti�
 datasets and two syntheti
 datasets.In Se
tion 3.5 we dis
uss possible appli
ations, and �nally in Se
tion 3.6 we dis
ussrelated work and possible lines of further resear
h.First, a qui
k note about notation. When modelling probability distributionsover
ontinuous variables, the fun
tions used usually provide estimated probabilitydensities at the spe
i�ed points | that is, in order to
ompute the a
tual probabilitythat a
ontinuous variable X will take on a value in some spe
i�ed range
lose tosome spe
i�
 value x, it is ne
essary to integrate the value of the density fun
tionover that range. Dis
rete probability distributions are usually spe
i�ed by fun
tionsthat represent probability masses. Sin
e the models dis
ussed in this
hapter andChapter 4 are intended to model distributions of dis
rete variables and
ontinuousvariables simultaneously, we will often simply write P (~X) where ~X is a set of variables,some of whi
h may be
ontinuous and others of whi
h may be dis
rete;
onvertingthis to an a
tual probability would, of
ourse, require integrating over a volume inthe spa
e of
ontinuous variables. For simpli
ity, we may also sometimes use notationsu
h as Z P (~X)d~Yin situations where ~Y � ~X may
ontain both dis
rete and
ontinuous variables. Thisis to be understood as shorthand for integrating over the
ontinuous variables in ~Yand summing over the dis
rete variables.
34

3.2 Mix-nets3.2.1 General methodologySuppose that we have a very fast, bla
k-box algorithm A geared not towards �ndinga

urate
onditional models of the form Pi(Xij ~�i), but rather towards �nding a

u-rate joint probability models Pi(~Si) over subsets of variables ~Si, su
h as Pi(Xi; ~�i).Furthermore, suppose it is only
apable of generating joint models for relatively smallsubsets of the variables, and that the models returned for di�erent subsets of vari-ables are not ne
essarily
onsistent. For example, if we were to ask A for two di�erentmodels P1(X5; X17) and P2(X5; X24), the marginal distributions P1(X5) and P2(X5)of these models may be in
onsistent. Can we still
ombine many di�erent modelsgenerated by A into a valid probability distribution over the entire spa
e?Fortunately, the answer is yes, as long as the models returned by A
an bemarginalized exa
tly. If for any given Pi(Xi; ~�i) we
an
ompute a marginal dis-tribution Pi(~�i) that is
onsistent with it,Pi(~�i) = Z Pi(Xi; ~�i)dXi;then we
an employ Pi as a
onditional distribution Pi(Xij ~�i) trivially as follows:Pi(Xij ~�i) = Pi(Xi; ~�i)=Pi(~�i):In this
ase, given a dire
ted a
y
li
 graph G spe
ifying a Bayesian network stru
tureover N variables, we
an simply use A to a
quire N models Pi(Xi; ~�i), marginalizethese models, and string them together to form a probability distribution over theentire spa
e: P (~X) = NYi=1Pi(Xi; ~�i)=Pi(~�i):A simple but key observation is that even though the marginals of di�erent Pi's maybe in
onsistent with ea
h other, the Pi's are only used
onditionally, and in a mannerthat prevents these in
onsisten
ies from a
tually
ausing the overall model to be
omein
onsistent. Of
ourse, the fa
t that there are in
onsisten
ies at all | suppressedor not | means that there is a
ertain amount of redundan
y in the overall model.However, if allowing su
h redundan
y lets us employ a parti
ularly fast and e�e
tivemodel-learning algorithm A, it may be worth it.35

Joint models over subsets of variables have been similarly
onditionalized in pre-vious resear
h in order to use them within Bayesian networks. For example, the
onditional distribution of ea
h variable in the network given its parents
an be mod-eled by
onditionalizing another \embedded" Bayesian network that spe
i�es thejoint distribution between the variable and its parents [HM97a℄. (Some theoreti
alissues
on
erning the interdependen
e of parameters in su
h models are dis
ussedin [HM97a℄ and [HM97b℄.) Joint distributions formed by
onvolving a Gaussian ker-nel fun
tion with ea
h of the datapoints have also been
onditionalized for use inBayesian networks over
ontinuous variables [HT95℄.3.2.2 Handling
ontinuous variablesSuppose for the moment that ~X
ontains only
ontinuous values. What sorts ofmodels might we want A to return? One powerful type of model for representingprobability density fun
tions over small sets of variables is a Gaussian mixture model(see e.g. [DH73℄). Let ~sj represent the values that the jth datapoint in the datasetD assigns to a variable set of interest ~S. In a Gaussian mixture model over ~S, weassume that the data are generated independently through the following pro
ess: forea
h ~sj in turn, nature begins by randomly pi
king a
lass,
k, from a dis
rete set of
lasses
1; : : : ;
M . Then nature draws ~sj from a multidimensional Gaussian whosemean ve
tor ~�k and
ovarian
e matrix �k depend on the
lass. This produ
es adistribution of the following mathemati
al form:P (~Sj~�) = MXk=1�k(2�)� d2 jj�kjj� 12 exp(�12(~S � ~�k)T��1k (~S � ~�k))where �k represents the probability of a point
oming from the kth
lass, d is thenumber of dimensions, and~�T = f�1; : : : ; �M ; ~�1; : : : ; ~�M ;�1; : : : ;�Mgdenotes the entire set of the mixture's parameters. It is possible to model any
on-tinuous probability distribution with arbitrary a

ura
y by using a Gaussian mixturewith a suÆ
iently large M .Given a Gaussian mixture model Pi(Xi; ~�i), it is easy to
ompute the marginaliza-tion Pi(~�i): the marginal mixture has the same number of Gaussians as the originalmixture, with the same �'s. The means and
ovarian
es of the marginal mixture are36

Figure 3.1: Contour plots for a simple Gaussian mixture P (X;�) (on the left) andthe
orresponding
onditional distribution P (Xj�) (on the right). X is the verti
alaxis and � is the horizontal axis.simply the means and
ovarian
es of the original mixture with all elements
orre-sponding to the variable Xi removed. Thus, Gaussian mixture models are suitablefor
ombining into global joint probability density fun
tions using the methodologydes
ribed in Se
tion 3.2.1, assuming all variables in the domain are
ontinuous. Thisis the
lass of models we employ for
ontinuous variables in this
hapter, althoughmany other
lasses may be used in an analogous fashion.While Pi(Xij~�i) is expressible as a mixture of Gaussians over Xi for any spe
i�
set of values ~�i assigned to ~�i, it is not generally expressible as a �nite mixture ofGaussians over Xi [~�i. For example, a two-variable mixture P (X;�)
omposedof two axis-aligned Gaussians is shown in Figure 3.1, along with the
orrespondingP (Xj�). For any �xed value � of �, P (Xj�) is a mixture of two Gaussians, butP (Xj�) as a fun
tion of both X and �
annot be expressed as a �nite mixture ofGaussians. (To see this, note that ea
h of the two \ridges" in the bottom half of theplot for P (Xj�) extends to in�nity in one dire
tion | one in the �� dire
tion andone in the +� dire
tion.)The fun
tional form of the
onditional distribution we use is similar to that em-ployed in previous resear
h by
onditionalizing a joint distribution formed by
onvolv-ing a Gaussian kernel fun
tion with all the datapoints [HT95℄. The di�eren
es arethat our distributions use fewer Gaussians, but these Gaussians have varying weightsand varying non-diagonal
ovarian
e matri
es; we also employ a di�erent learningalgorithm to tune the model's parameters. The use of fewer Gaussians makes ourmethod more suitable for some appli
ations su
h as
ompression, and may speed up37

inferen
e. (Our method may also yield more a

urate models in many situations, butwe have yet to verify this experimentally.)Learning Gaussian mixtures from dataThe EM algorithm is a popular method for learning mixture models from data (see,e.g., [DLR77℄). The algorithm is an iterative algorithm with two steps per iteration.The Expe
tation or \E" step
al
ulates the distribution over the unobserved mixture
omponent variables, using the
urrent estimates for the model's parameters. TheMaximization or \M" step then re-estimates the model's parameters to maximize thelikelihood of both the observed data and the unobserved mixture
omponent variables,assuming the distribution over mixture
omponents
al
ulated in the previous \E"step is
orre
t. For Gaussian mixture models, the steps of the EM algorithm work asfollows:� E step: Given the
urrent network parameters ~�, for ea
h datapoint ~sj and ea
h
lass
k,
al
ulate the extent wjk to whi
h
lass
k \owns" ~sj: wjk = P (
kjsj; ~�).� M step: Adjust ~� as follows:�k = swkR ; ~�k = 1swk RXj=1wjk~sj;�j = 1swk RXj=1wjk(~sj � ~�k)(~sj � ~�k)Twhere R is the number of datapoints in the dataset and swk = PRj=1wjk.Ea
h iteration of the EM algorithm in
reases the likelihood of the observed data orleaves it un
hanged; if it leaves it un
hanged, this usually indi
ates that the likelihoodis at a lo
al maximum. Unfortunately, ea
h iteration of the basi
 algorithm des
ribedabove is slow, sin
e it requires a entire pass through the data. Instead, we use ana

elerated EM algorithm in whi
h multiresolution kd-trees [MSD97℄ are used todramati
ally redu
e the
omputational
ost of ea
h iteration [Moo99℄. We refer theinterested reader to this previous paper [Moo99℄ for details.An important remaining issue is how to
hoose the appropriate number of Gaus-sians, M , for the mixture. If we restri
t ourselves to too few Gaussians, we will fail38

to model the data a

urately; on the other hand, if we allow ourselves too many, thenwe may \over�t" the data and our model may generalize poorly. A popular way ofdealing with this tradeo� is to
hoose the model maximizing a s
oring fun
tion thatin
ludes penalty terms related to the number of parameters in the model. We employthe Bayesian Information Criterion [S
h78℄ previously dis
ussed in Se
tion 2.2.1 to
hoose between mixtures with di�erent numbers of Gaussians. Rather than re-runthe EM algorithm to
onvergen
e for many di�erent
hoi
es of M and
hoosing theresulting mixture that maximizes the BIC s
ore, we use a heuristi
 algorithm thatstarts with a small number of Gaussians and sto
hasti
ally tries adding or deletingGaussians as it progresses [SM00℄1. Gaussians with high overall probabilities aresometimes ea
h split into two Gaussians, and Gaussians with low overall probabilitiesare sometimes eliminated. After the number of Gaussians is
hanged in this fashion,the EM algorithm is run for a few more iterations. If the resulting mixture has ahigher BIC s
ore than the BIC s
ore of the mixture with the previous number ofGaussians, then the algorithm
ontinues; otherwise it resets its distribution ba
k tothe mixture with the previous number of Gaussians, runs the EM algorithm for a fewmore iterations, and then
ontinues sto
hasti
ally from there.3.2.3 Handling dis
rete variablesSuppose now that a set of variables ~Si we wish to model in
ludes dis
rete variablesas well as
ontinuous variables. Let ~Qi be the dis
rete variables in ~Si, and ~Ci the
ontinuous variables in ~Si. One simple model for Pi(~Qi; ~Ci) is a lookup table withan entry for ea
h possible set ~qi of assignments to ~Qi. The entry in the table
orre-sponding to a parti
ular ~qi
ontains two things: the marginal probability Pi(~qi), anda Gaussian mixture modeling the
onditional distribution Pi(~Cij~qi). Let us refer totables of this form as mixture tables. We obtain the mixture table's estimate for ea
hPi(~qi) dire
tly from the data: it is simply the fra
tion of the re
ords in the datasetthat assigns the values ~qi to ~Qi. Given an algorithm A for learning Gaussian mixturesfrom
ontinuous data, we use it to generate ea
h
onditional distribution Pi(~Cij~qi) inthe mixture table by
alling it with the subset of the dataset D
orresponding to thevalues spe
i�ed by ~qi.Suppose now that we are given a Bayesian network stru
ture over the entire setof variables, and for ea
h variable Xi we are given a mixture table for Pi(~Si) =1Thanks to Andrew Moore and Peter Sand for providing the C
ode for this algorithm.39

Pi(Xi; ~�i). We must now
al
ulate new mixture tables for ea
h of the marginal distri-butions Pi(~�i) so that we
an use them for the
onditional distributions Pi(Xij ~�i) =Pi(Xi; ~�i)=Pi(~�i). Let ~Ci represent the
ontinuous variables in fXig [~�i; ~Qi rep-resent the dis
rete variables in fXig [~�i; ~C�i represent the
ontinuous variables in~�i; and ~Q�i represent the dis
rete variables in ~�i. (Either ~Q�i = ~Qi or ~C�i = ~Ci,depending on whether Xi is
ontinuous or dis
rete.)If Xi is
ontinuous, then the marginalized mixture table for Pi(~�i) has the samenumber of entries as the original table for Pi(Xi; ~�i), and the estimates for P (~Qi)in the marginalized table are the same as in the original table. For ea
h
ombina-tion of assignments to ~Qi, we simply marginalize the appropriate Gaussian mixturePi(~Cij ~Qi) = Pi(~Cij ~Q�i) in the original table to a new mixture Pi(~C�ij ~Q�i), and usethis new mixture in the
orresponding spot in the marginalized table.If Xi is dis
rete, then for ea
h
ombination of assignments to ~Q�i , we
ombine sev-eral di�erent Gaussian mixtures for various Pi(~C�ij ~Qi)'s into a new Gaussian mixturefor Pi(~C�ij ~Q�i). First, the values of Pi(~Q�i) in the marginalized table are
omputedtrivially from the original table as Pi(~Q�i) = PXi Pi(Xi; ~Q�i). Pi(Xij ~Q�i) is then
al
ulated as Pi(Xi; ~Q�i)=Pi(~Q�i). Finally, we
ombine the Gaussian mixtures
orre-sponding to di�erent values of Xi a

ording to the relationshipPi(~C�ij ~Q�i) =XXi Pi(Xij ~Q�i)Pi(~C�ij ~Qi):We have now des
ribed the steps ne
essary to use mixture tables in order to param-eterize Bayesian networks over domains with both dis
rete and
ontinuous variables.Note that mixture tables are not parti
ularly well-suited for dealing with dis
retevariables that
an take on many possible values, or for s
enarios involving many de-pendent dis
rete variables | in su
h situations, the
ontinuous data will be shatteredinto many separate Gaussian mixtures, ea
h of whi
h will have little support. Betterways of dealing with dis
rete variables are undoubtedly possible, but we leave themfor future resear
h (see Se
tion 3.6). The models we will dis
uss in Chapter 4 nat-urally handle dis
rete variables in a mu
h more gra
eful manner. (We will brie
ydis
uss how we
urrently handle mixture tables' potential problems with sparse datain our experimental results se
tion.)
40

3.3 Learning mix-net stru
turesGiven a Bayesian network stru
ture over a domain with both dis
rete and
ontinuousvariables, we now know how to learn mixture tables des
ribing the joint probability ofea
h variable and its parent variables, and how to marginalize these mixture tables toobtain the
onditional distributions needed to
ompute a
oherent probability fun
tionover the entire domain. But what if we don't know a priori what dependen
ies existbetween the variables in the domain |
an we learn these dependen
ies automati
allyand �nd the best Bayesian network stru
ture on our own, or at least �nd a \good"network stru
ture?As mentioned in Se
tion 2.2.1, �nding the optimal Bayesian network stru
turewith whi
h to model a given dataset is NP-
omplete [Chi96℄, even when all the datais dis
rete and there are no missing values or hidden variables. A popular heuristi
approa
h to �nding networks that model dis
rete data well is to hill
limb over networkstru
tures, using a s
oring fun
tion su
h as the BIC as the
riterion to maximize.Unfortunately, hill
limbing usually requires s
oring a very large number of networks.While our algorithm for learning Gaussian mixtures from data is
omparatively fastfor the
omplex task it performs, it is still too expensive to re-run on the hundredsof thousands of di�erent variable subsets that would be ne
essary to parameterize allthe networks tested over an extensive hill
limbing run. (Su
h a hill
limbing algorithmhas previously been used to �nd Bayesian networks suitable for modeling
ontinuousdata with
omplex distributions [HT95℄, but in pra
ti
e this method is restri
ted todatasets with relatively small numbers of variables and datapoints.)However, there are other heuristi
 algorithms that often �nd networks very
losein quality to those found by hill
limbing but with mu
h less
omputation. A fre-quently used
lass of algorithms involves measuring all pairwise intera
tions betweenthe variables, and then
onstru
ting a network that models the strongest of thesepairwise intera
tions (e.g. [CL68℄, [Sah96℄, [FNP99℄, and the se
ond algorithm usedin Se
tion 2.2.1). We use su
h an algorithm in this
hapter to automati
ally learnthe stru
tures of our Bayesian networks.In order to measure the pairwise intera
tions between the variables, we start withan empty Bayesian network B� in whi
h there are no ar
s | i.e., in whi
h all variablesare assumed to be independent. We use our mixture-learning algorithm to
al
ulatethe parameters in this empty network, and then
al
ulate this network's BIC s
ore(see Se
tion 2.2.1). On
e we have
al
ulated the BIC s
ore of the empty network B�,41

we
al
ulate the BIC s
ore of every possible Bayesian network
ontaining exa
tly onear
. With N variables, there are �N2� or O(N2) su
h networks. Let Bij denote thenetwork with a single ar
 from Xi to Xj. Note that to
ompute the BIC s
ore of Bij,we need not re
ompute the mixture tables for any variable other than Xj, sin
e theothers
an simply be
opied from B�. Now, de�ne I(Xi; Xj), the \importan
e" of thedependen
y between variable Xi and Xj, as follows:I(Xi; Xj) = BIC(Bij)� BIC(B�):After
omputing all the I(Xi; Xj)'s, we initialize our
urrent working network Bto the empty network B�, and then greedily add ar
s to B using the I(Xi; Xj)'s ashints for what ar
s to try adding next. At any given point in the algorithm, the setof variables is split into two mutually ex
lusive subsets, DONE and PENDING. Allvariables begin in the PENDING set. Our algorithm pro
eeds by sele
ting a variablein the PENDING set, adding ar
s to that variable from other variables in the DONEset, moving the variable to the DONE set, and repeating until all variables are inDONE. High-level pseudo-
ode for the algorithm appears in Figure 3.2.The algorithm generates and tests O(N2) mixture tables
ontaining two variablesea
h in order to
al
ulate all the pairwise dependen
y strengths I(Xi; Xj), and thenO(N � K) more tables
ontaining MAXPARS+1 or fewer variables ea
h during thegreedy network
onstru
tion. K is a user-de�ned parameter that determines themaximum number of potential parents evaluated for ea
h variable during the greedynetwork
onstru
tion.Note that as the algorithm is des
ribed above, the step in the algorithm labeledwith a \y" in Figure 3.2 might appear to take O(N2) time, thus bumping the overalltime of the algorithm up to O(N3). By
a
hing information between iterations, the
ost of this step per iteration
ould be redu
ed to O(N logK), for a total
ost ofO(N2 logK). However, this savings is largely irrelevant; the real
ost of the stru
ture-learning algorithm lies in the O(N2)
alls to the mixture-table learning algorithm.Ea
h of these
alls typi
ally takes at least O(R) time, where R is the number ofre
ords in the dataset, and R is typi
ally mu
h larger than N .If MAXPARS is set to 1 and I(Xi; Xj) is symmetri
, then our heuristi
 algorithmredu
es to a maximum spanning tree algorithm (or to a maximum-weight forest algo-rithm if some of the I's are negative). Out of all possible Bayesian networks in whi
hea
h variable has at most one parent, this maximum spanning tree is the Bayesiannetwork B1opt that maximizes the s
oring fun
tion. (This is a trivial generalization of42

� B := B�, PENDING := the set of all variables, DONE := fg� While there are still variables in PENDING:{ Consider all pairs of variables Xd and Xp su
h that Xd is in DONE and Xpis in PENDING:y Of these, let Xmaxd and Xmaxp be the pair of variablesthat maximizes I(Xd; Xp). Our algorithm sele
ts Xmaxp as the next variableto
onsider adding ar
s to. (Ties are handled arbitrarily, as is the
asewhere DONE is
urrently empty.){ Let K 0 = min(K; jDONEj), where K is a user-de�ned parameter. LetX1d ; X2d ; : : :XK0d denote the K 0 variables in DONE with the highest valuesof I(X id; Xmaxp), in des
ending order of I(X id; Xmaxp).{ For i = 1 to K 0:� If Xmaxp now has MAXPARS parents in B, or if I(X id; Xmaxp) is lessthan zero, break out of the for loop over i and do not
onsider addingany more parents to Xmaxp .� Let B0 be a network identi
al to B ex
ept with an additional ar
from X id to Xmaxp . Call our mixture-learning algorithm to update theparameters for Xmaxp 's node in B0, and
ompute BIC(B0).� If BIC(B0) > BIC(B); B := B0.{ Move Xmaxp from PENDING to DONE.Figure 3.2: The greedy network stru
ture learning algorithm employed in this
hapter.
43

the well-known algorithm [CL68℄ for the
ase where the unpenalized log-likelihood isthe obje
tive
riteria being maximized.) If MAXPARS is set above 1, our heuristi
algorithm will always model a superset of the dependen
ies in B1opt, and will always�nd a network with at least as high a BIC s
ore as B1opt's.There are a few details that prevent our I(Xi; Xj)'s from being perfe
tly sym-metri
. Be
ause the mixtures we use have redundant parameters, the number ofparameters in Bij and Bji are not ne
essarily equal, and so the two networks' BICs
ores may be di�erent even if the distributions they model are identi
al. Further-more, the distributions modeled by the two networks will not generally be identi
al,sin
e our mixture-learning algorithm is sto
hasti
 and will not usually �nd distribu-tions with the truly highest possible likelihoods. Also, even in s
enarios in whi
h allthe variables are dis
rete, the two distributions may not be identi
al be
ause of theslight adjustments we make in our models' parameters in order to handle sparse data(as des
ribed in the experimental results se
tion). In pra
ti
e, however, I is
loseenough to symmetri
 that it's often worth pretending that it is symmetri
, sin
e this
uts down the number of
alls we need to make to our mixture-learning algorithm inorder to
al
ulate the I(Xi; Xj)'s by roughly a fa
tor of 2.Sin
e learning joint distributions involving real variables is expensive,
alling ourmixture table generator even just O(N2) times to measure all of the I(Xi; Xj)'s
antake a prohibitive amount of time. We note that the I(Xi; Xj)'s are only used to
hoose the order in whi
h the algorithm sele
ts variables to move from PENDINGto DONE, and to sele
t whi
h ar
s to try adding to the graph. The a
tual values ofI(Xi; Xj) are irrelevant | the only things that matter are their ranks and whetherthey are greater than zero. Thus, in order to redu
e the expense of
omputing theI(Xi; Xj)'s, we
an try
omputing them on a dis
retized version of the dataset ratherthan the original dataset that in
ludes
ontinuous values. The resulting ranks ofI(Xi; Xj) will not generally be the same as they would be if they were
omputedfrom the original dataset, but we would expe
t them to be highly
orrelated in manypra
ti
al
ir
umstan
es.Mu
h like the stru
ture-learning algorithm employed in Chapter 2, the stru
ture-learning algorithm used here is similar to the \Limited Dependen
e Bayesian Clas-si�ers" previously employed to learn networks for
lassi�
ation [Sah96℄, ex
ept thatour networks have no spe
ial target variable, and we add the potential parents to agiven node one at a time to ensure that ea
h a
tually in
reases the network's s
ore.44

The learning algorithm is also somewhat similar in spirit to the \Sparse Candidate"algorithm [FNP99℄. We will generalize the algorithm further in Se
tion 4.6.3.4 ExperimentsIn this se
tion, we
ompare the performan
e of the network-learning algorithm de-s
ribed above to the performan
e of four other algorithms. Ea
h of the four otheralgorithms is designed to be similar to our network-learning algorithm ex
ept in oneimportant respe
t. First we des
ribe a few details about how our primary network-learning algorithm is used in our experiments, and then we des
ribe the four alterna-tive algorithms.3.4.1 AlgorithmsMix-net learnerThis is our primary network-learning algorithm, as des
ribed in Figure 3.2. For ourexperiments on both datasets, we set MAXPARS to 3 and K to 6. When generatingany given Gaussian mixture, we give our a

elerated EM algorithm thirty se
ondsto �nd the best mixture it
an. In order to make the most of these thirty-se
ondintervals, we also limit our overall training algorithm to using a sample of at most10,000 datapoints from the training set. Rather than
omputing the I(Xi; Xj)'s withthe original dataset, we
ompute them with a version of the dataset in whi
h ea
h
ontinuous variable has been dis
retized to 16 di�erent values. The boundaries of the16 bins for ea
h variable's dis
retization are
hosen so that the number of datapointsin ea
h bin is approximately equal.Mixture tables
ontaining many dis
rete variables (or a few dis
rete variables ea
hof whi
h
an take on many values)
an severely over�t data, sin
e some
ombinationsof the dis
rete variables may o

ur rarely in the data. For now, we attempt to addressthis problem as follows:� The estimates for the distribution Pi(~Qi) over the dis
rete variables in any givenmixture table are smoothed by adding half a datapoint's worth of probabilitymass to ea
h possible
ombination and renormalizing a

ordingly.45

� In addition to the Gaussian
omponents, ea
h mixture over
ontinuous variables
ontains a uniform
omponent. This uniform
omponent represents a
onstantdensity over a hypervolume bounding the entire dataset. We �x this uniform
omponent's total probability mass at half a datapoint's worth, and renormalizethe distribution a

ordingly. If there are too few datapoints in the mixture to �teven a single Gaussian, then the mixture
ontains only this uniform
omponent,whi
h is assigned a total probability mass of one in this spe
ial
ase.Whenever Gaussian mixtures are learned, there is a possibility that a Gaussian willbe
ome ill-
onditioned and further mathemati
al operations will fail due to roundo�error. Even worse, a Gaussian may shrink to an arbitrarily small size around a singledatapoint and thus
ontribute an arbitrarily large amount to the log-likelihood ofthe training data. We help prevent these
onditions from o

urring by adding asmall
onstant to the diagonal elements of all Gaussians'
ovarian
e matri
es. (Amore prin
ipled but slightly more
omplex approa
h would be to use a prior over theGaussians' parameters, su
h as a normal-Wishart distribution.)Independent MixturesThis algorithm will help us illustrate how mu
h leverage our mix-net learning algo-rithm gets by modeling any dependen
ies at all between variables. It is identi
al toour mix-net learning algorithm in almost all respe
ts; the main di�eren
e is that herethe MAXPARS parameter has been set to zero, thus for
ing all variables to be mod-eled independently. We also give this algorithm more time to learn ea
h individualGaussian mixture, so that it is given a total amount of
omputational time at leastas great as that used by our mix-net learning algorithm.TreesThis algorithm will help us illustrate how mu
h leverage our mix-net learning algo-rithm gets by generating models more
omplex than tree-shaped (or forest-shaped)networks. It is identi
al to our primary network-learning algorithm in all respe
tsex
ept that the MAXPARS parameter has been set to one, and we give it more timeto learn ea
h individual Gaussian mixture (as we did for the Independent Mixturesalgorithm). 46

Single-Gaussian MixturesThis algorithm will help us illustrate how mu
h leverage our mix-net learning algo-rithm gets by using mixtures
ontaining multiple Gaussians. It is identi
al to ourprimary network-learning algorithm ex
ept for the following di�eren
es. When learn-ing a given Gaussian mixture Pi(~Cij ~Qi), we use a single multidimensional Gaussianrather than a mixture. (Note, however, that some of the marginal distributionsPi(~C�i j ~Q�i) may
ontain multiple Gaussians when the variable marginalized away isdis
rete.) Sin
e single Gaussians are mu
h easier to learn in high-dimensional spa
esthan mixtures are, we allow this single-Gaussian algorithm mu
h more freedom in
re-ating large mixtures. We set both MAXPARS and K to the total number of variablesin the domain minus one. We also allow the algorithm to use all datapoints in thetraining set rather than restri
t it to a sample of 10,000. Finally, we use the originalreal-valued dataset rather than a dis
retized version of the dataset when
omputingea
h pairwise intera
tion I(Xi; Xj).Dis
laimer: as implemented for these experiments, this algorithm over
ounts thenumber of parameters truly required to represent the distributions being modelled.When a joint distribution P (Xi; ~�i)
omposed of a single Gaussian is used
ondition-ally, the resulting
onditional distribution P (Xij ~�i) is the same as would be providedwith linear regression, whi
h requires only O(j ~�ij) parameters. (See Se
tion 4.2.2 fordetails.) Better methods for learning Bayesian networks of this form have been re-sear
hed in the past (e.g. [GH94℄). However, the a

ura
y of the implementation hereis probably not too mu
h worse than the performan
e that would be a
hieved withthese other methods given the large number of datapoints used in our experiments.Pseudo-Dis
rete Bayesian NetworksThis algorithm is similar to our primary network-learning algorithm in that it usesthe same sort of greedy algorithm to sele
t whi
h ar
s to try adding to the network.However, the networks this algorithm produ
es do not employ Gaussian mixtures.Instead, the distributions it uses are
losely related to the distributions that would bemodeled by a Bayesian network for a
ompletely dis
retized version of the dataset. Forea
h
ontinuous variable Xi in the domain, we break Xi's range into F bu
kets. Theboundaries of the bu
kets are
hosen so that the number of datapoints lying withinea
h bu
ket is approximately equal. The
onditional distribution for Xi is modeled47

with a table
ontaining one entry for every
ombination of its parent variables, whereea
h
ontinuous parent variable's value is dis
retized a

ording to the F bu
kets wehave sele
ted for that parent variable. Ea
h entry in the table
ontains a histogramfor Xi re
ording the
onditional probability that Xi's value lies within the boundariesof ea
h of Xi's F bu
kets. We then translate the
onditional probability asso
iatedwith ea
h bu
ket into a
onditional probability density spread uniformly throughoutthe range of that bu
ket. (Dis
rete variables are handled in a similar manner, ex
eptthe translation from
onditional probabilities to
onditional probability densities isnot performed.)When performing experiments with this algorithm, we re-run it for several di�erent
hoi
es of F : 2, 4, 8, 16, 32, and 64. Of the resulting networks, we pi
k the onethat maximizes the BIC. When the algorithm uses a parti
ular value for F , thevariable intera
tions I(Xi; Xj) are
omputed using a version of the dataset that hasbeen dis
retized a

ordingly, and then ar
s are added greedily as in our mix-netlearning algorithm. The networks produ
ed by this algorithm do not have redundantparameters as our mix-nets do, as ea
h node
ontains only a model of its variable's
onditional distribution given its parents rather than a joint distribution.Dis
laimer: mu
h resear
h has been performed on better ways of dis
retizing realvariables in Bayesian networks (e.g. [FG96a℄, [MC98a℄, [MC99℄). The simple dis-
retization algorithm dis
ussed here and
urrently implemented for our experimentsis
ertainly not state-of-the-art.3.4.2 Datasets and resultsWe tested the previously des
ribed algorithms on two di�erent datasets taken fromreal s
ienti�
 experiments. The \Bio" dataset
ontains data from a high-throughputbiologi
al
ell assay. There are 12,671 re
ords and 31 variables. 26 of the variablesare
ontinuous; the other �ve are dis
rete. Ea
h dis
rete variable
an take on eithertwo or three di�erent possible values.The \Astro" dataset
ontains data taken from the Sloan Digital Sky Survey, anextensive astronomi
al survey
urrently in progress. This dataset
ontains 111,456re
ords and 68 variables. 65 of the variables are
ontinuous; the other three aredis
rete, with arities ranging from three to 81.Two minor adjustments were made to ea
h of the original datasets before handing48

Bio AstroIndependent Mixtures 33300� 500 2746000� 5000Single-Gaussian Mixtures 65700� 200 2436000� 5000Pseudo-Dis
rete 59100� 100 3010000� 1000Tree 74600� 300 3280000� 8000Mix-Net 80900� 300 3329000� 5000Figure 3.3: Mean log-likelihoods (and the standard deviations of the means) of testsets in a 10-fold
ross-validation.them to any of our learning algorithms. First, all
ontinuous variables were s
aledso that all values lie within [0; 1℄. This helps put the log-likelihoods we report in
ontext, and possibly helps prevent problems with limited ma
hine
oating-pointrepresentation. Se
ond, the value of ea
h
ontinuous value in the dataset were ran-domly perturbed by adding to it a value uniformly sele
ted from [-.0005, .0005℄. Thisnoise was added to eliminate any deterministi
 relationships or delta fun
tions in thedata. The log-likelihood of a
ontinuous dataset exhibiting even a single determin-isti
 relationship between two variables is in�nite when given the
orre
t model; insu
h a situation, it is not
lear how meaningful log-likelihood
omparisons between
ompeting learning algorithms would be. (See Se
tion 4.3 for further dis
ussion onthis topi
.) We added uniform noise rather than Gaussian noise in order to preventthe introdu
tion of a bias that favors Gaussian mixtures.For ea
h dataset and ea
h algorithm, we performed ten-fold
ross-validation, andre
orded the log-likelihoods of the test sets given the resulting models. Figure 3.3shows the mean log-likelihoods of the test sets a

ording to models generated byour �ve network-learning algorithms, as well as the standard deviation of the means.(Note that the log-likelihoods are positive sin
e most of the variables are
ontinuousand bounded within [0; 1℄, whi
h implies that the models usually assign probabilitydensities greater than one to regions of the spa
e
ontaining most of the datapoints.The probability distributions modeled by the networks are properly normalized, how-ever.)On the Bio dataset, our primary mix-net learner a
hieved signi�
antly higher log-likelihood s
ores than the other four model learners. The fa
t that it signi�
antlyoutperformed the independent mixture algorithm and the tree-learning algorithmindi
ates that it is e�e
tively utilizing relationships between variables, and that it49

in
ludes useful relationships more
omplex than mere pairwise dependen
ies. The fa
tthat its networks outperformed the pseudo-dis
rete networks and the single-Gaussiannetworks indi
ates that the Gaussian mixture models used for the network nodes'parameterizations helped the network a
hieve mu
h better predi
tion than possiblewith simpler parameterizations. Our primary mix-net learning algorithm took aboutan hour and a half of CPU time on a 400 MHz Pentium II to generate its model forea
h of the ten
ross-validation splits for this dataset.The mix-net learner similarly outperformed the other algorithms on the Astrodataset. The algorithm took about three hours of CPU time to generate its modelfor ea
h of the
ross-validation splits for this dataset.As additional tests of the mix-nets' robustness, we
onstru
ted two syntheti
datasets from the Bio dataset. For the �rst syntheti
 dataset, all real values inthe original dataset were dis
retized in a manner identi
al to the manner in whi
h thepseudo-dis
rete networks dis
retized them, with 16 bu
kets per variable. (Out of themany di�erent numbers of bu
kets we tried with the pseudo-dis
rete networks, 16 wasthe number that worked best on the Bio dataset.) Ea
h dis
retized value was thentranslated ba
k into a real value by sampling it uniformly from the
orrespondingbu
ket's range. The resulting syntheti
 dataset is similar in many respe
ts to theoriginal dataset, but its probability densities are now
omposed of pie
ewise
onstantaxis-aligned hyperboxes | pre
isely the kind of distributions that the pseudo-dis
retenetworks model. This syntheti
 dataset
auses the pseudo-dis
rete network learn-ing algorithm to learn a network identi
al to the network it learns from the originaldataset; the pseudo-dis
rete network's test-set log-likelihood performan
e on this syn-theti
 dataset is also identi
al to its test-set log-likelihood performan
e on the originaldata. However, we might expe
t mix-nets to perform mu
h worse than the pseudo-dis
rete networks on this syntheti
 dataset, sin
e the syntheti
 dataset's distributionsmay be mu
h harder to represent with mixtures of Gaussians. As it turns out, thetest-set performan
e of mix-nets on this syntheti
 dataset is worse than the perfor-man
e of pseudo-dis
rete networks, but not dramati
ally so: the mix-net's averagetest-set log-likelihood on the syntheti
 dataset drops down to 57600 � 200. This issigni�
antly worse than the pseudo-dis
rete networks' log-likelihood, whi
h stayed at59100 � 100, but this di�eren
e in s
ores is not nearly as large as the di�eren
e onthe original dataset, where the mix-nets
learly dominated.For the se
ond syntheti
 dataset, we generated 12,671 samples from the network50

learned by the Independent Mixtures algorithm during one of it
ross-validation runson the Bio dataset. The test-set log-likelihood of the models learned by the Inde-pendent Mixtures algorithm on this dataset is 32580� 60, while our primary mix-netlearning algorithm s
ored a slightly worse 31960� 80. However, the networks learnedby the mix-net learning algorithm did not a
tually model any spurious dependen-
ies between variables. The networks learned by the Independent Mixtures algorithmwere better only be
ause the Independent Mixtures algorithm was given more timeto learn ea
h of its Gaussian mixtures.3.5 Possible appli
ations for Mix-Nets3.5.1 Classi�
ationSo far, we have only dis
ussed learning mix-nets in situations where our obje
tiveis to �nd a network that a

urately models the distribution over the entire set ofvariables. What if our goal is to a

urately predi
t the distribution of one dis
retetarget variable given the values of all the other variables in the domain? A networklearned by an algorithm optimized to a

urately model the distribution over all thevariables is not likely to fare well
ompared to networks learned by algorithms thattake the spe
i�
 predi
tion task at hand into
onsideration.A simple, popular and e�e
tive type of
lassi�er, the Naive Bayes
lassi�er, as-sumes that the non-target variables are all independent of ea
h other given the valueof the target variable. This
orresponds to using a Bayesian network in whi
h thereis an ar
 from the target variable to ea
h non-target variable, but no ar
s betweenthe non-target variables. The non-target variables are usually assumed to be dis
rete;however,
ontinuous variables have been handled in the past by using Gaussians orkernel density estimators for the
onditional distributions of
ontinuous variables (e.g.,[JL95℄).A re
ently developed type of
lassi�er, Tree Augmented Naive Bayes(TAN) [FGG97℄, augments the network stru
ture of Naive Bayes with additionalar
s between the non-target variables, where ea
h non-target variable is
onditionedon at most one other non-target variable. This
lassi�er has been extended to handle
ontinuous variables by representing ea
h
ontinuous variable in the network twi
e:on
e in a dis
retized form, and on
e in a simple
onditional parametri
 form [FGL98℄.51

Our greedy network-learning algorithm
an easily be modi�ed to learn mix-net
lassi�ers similar in stru
ture to TAN
lassi�ers. By raising our algorithm's MAX-PARS parameter higher than 1, it
an also be used to learn
lassi�ers with more
ompli
ated network stru
tures. The network stru
ture-learning algorithm wouldbe very similar to the previously developed \Limited Dependen
e Bayesian Classi-�ers" algorithm [Sah96℄. The mix-nets' more
exible parameterizations would allowthese
lassi�ers to model
omplex intera
tions between
ontinuous and dis
rete vari-ables without requiring dis
retization of the
ontinuous variables. Furthermore, sin
emix-nets
an have dis
rete variables
onditioned on
ontinuous variables, the samenetwork-learning algorithm
an be used to learn networks for predi
ting the
ondi-tional probability density of a
ontinuous variable given the values of all the other
ontinuous and dis
rete variables in the domain. (Using these models may be some-what
omputationally expensive, however, sin
e the
onditional distribution over thetarget variable is not obviously expressible in
losed form and one may have to resortto sampling or numeri
 integration.)3.5.2 Anomaly dete
tionOne obvious appli
ation for a

urate joint probability models over large numbers ofdis
rete and
ontinuous variables is anomaly dete
tion. The models
an be used onlineto help dete
t the presen
e of abnormally low-probability situations. Alternatively,they
an be used o�ine on the same datasets from whi
h they are learned in order torank the datapoints by their log-likelihoods. If the learned models are a

urate, thedatapoints assigned low log-likelihoods are probably unusual in reality as well. Weare
urrently exploring the use of networks learned from astronomi
al survey datato automati
ally sele
t unusual astronomi
al obje
ts for further inspe
tion by humaninvestigators [NCC+01℄.3.5.3 Inferen
eWhile it is possible to perform exa
t inferen
e in some kinds of networks modeling
ontinuous values (e.g. [DM95℄, [Ala96℄), exa
t inferen
e in arbitrarily-stru
tured mix-nets with
ontinuous variables may not be possible. However, inferen
e in thesenetworks
an be performed via sto
hasti
 sampling methods. If we are given a mixturetable modeling P (Xi; ~�i) and spe
i�
 values ~�i for ~�i, it is possible to
ompute52

a
onditional mixture table P (Xij~�i). This
onditional mixture table
an then besampled straightforwardly. Thus, given a mix-net, we
an easily employ likelihoodweighting to generate a set of weighted datapoints representing a sample from any
onditional distribution we desire. Whether likelihood weighting or other samplingmethods will yield a

eptably a

urate inferen
e results in a reasonable amount oftime remains to be seen. Other approximate inferen
e methods su
h as dis
retization-based inferen
e (e.g. [KK97℄) or variational inferen
e (see e.g. [JGJS98℄) are also worthinvestigating.3.5.4 Data
ompressionAs dis
ussed in Chapter 2, many popular and powerful methods for data
ompressionsu
h as arithmeti

oding rely on expli
it probabilisti
 models of the data they are
ompressing; using automati
ally learned Bayesian networks for these models
anresult in
ompression ratios dramati
ally better than those a
hievable by gzip orbzip2, while maintaining megabyte per se
ond de
oding speeds. Can this approa
hbe extended to real-valued data?In order to
ompress real-valued data, some loss of a

ura
y must usually be a
-
epted | after the �rst few signi�
ant �gures, real values typi
ally be
ome impossibleto model as anything other than in
ompressible random noise. Thus, the question is:how mu
h
an the data be
ompressed if we are willing to a

ept some given averageloss of a

ura
y in the re
onstru
tion? Lossily
ompressing values using a Gaussianmodel is a well-studied problem (see, e.g. [Say96℄). How do we lossily
ompress val-ues
oming from a mixture of Gaussians? One obvious approa
h would be to en
odeea
h point as follows. First, we
al
ulate the likelihood with whi
h it
ame from ea
hGaussian in the mixture. Suppose the maximum likelihood Gaussian is Gm. We thenen
ode in our
ompressed dataset the fa
t that the next datapoint is generated byGm, and then en
ode the datapoint using Gm as our model distribution.Unfortunately, this method of
oding is suboptimal when the Gaussians overlap.However, it is possible for an algorithm to e�e
tively re
over the bits wasted in thismanner by using a
lever \bits-ba
k" method to en
ode some extra \side information"in the
hoi
e of whi
h Gaussian gets used for the en
oding [Fre98℄. For example,if two Gaussians are almost equally likely to have generated the data, then we
ane�e
tively transmit about one bit's worth of information (about some other datapoint,for example) \for free" in our
hoi
e of whi
h of the two Gaussians we use, rather53

than always simply pi
king the Gaussian with the slightly higher likelihood.Automati
ally learned mix-nets may be a reasonably e�e
tive model
lass withwhi
h to
ompress large datasets
ontaining both
ontinuous and dis
rete values.However, in Chapter 4, we will explore a di�erent set of models that appear evenmore suitable.3.6 Con
lusions, Related Work, and Possible Ex-tensionsWe have des
ribed a pra
ti
al method for learning Bayesian networks
apable ofmodeling
omplex intera
tions between many
ontinuous and dis
rete variables, andhave provided experimental results showing that the method is both feasible ande�e
tive on s
ienti�
 data with dozens of variables. The networks learned by thisalgorithm and related algorithms show
onsiderable potential for many importantappli
ations. However, there are many ways in whi
h our method
an be improvedupon. We now brie
y dis
uss a few of the more obvious possibilities for improvement.The mixture tables in our network in
lude a
ertain degree of redundan
y, sin
ethe mixture table for ea
h variable models the joint probability of that variable withits parents rather than just the
onditional probability of that variable given its par-ents. For example,
onsider a
ompletely
onne
ted network
ontaining N
ontinuousvariables in whi
h the joint probability of ea
h variable and its parents is modeled asa single multidimensional Gaussian. In this
ase our network will have O(N3) param-eters, despite the fa
t that the overall distribution modeled by the network is a
tuallyjust a single multidimensional Gaussian representable with O(N2) parameters. Thiswastes memory and
omputational time. Perhaps more importantly, the larger num-ber of parameters may
ause a network-learning algorithm to favor a simpler modelwith fewer parameters, even if there is enough data to justify the O(N2) parametersthat would be used by a single multidimensional Gaussian. Naturally, it is possi-ble to eliminate this redundan
y in the spe
ial
ase of single-Gaussian mixtures byfalling ba
k to a representation in whi
h ea
h variable is modeled as a linear fun
tionof its parent variables plus Gaussian noise. Some other te
hniques have also beendeveloped for
omputing nonredundant parameterizations of Bayesian networks withembedded joint distributions [HM97a℄. However, we know of none that are obviously54

pra
ti
ally appli
able to the type of model employed in this
hapter. Another possibleapproa
h is to simply drop the use of parameter-
ounting s
ore metri
s and insteadrely on other methods su
h as
ross-validation in order to
ontrol the
omplexity ofthe model. This is the approa
h we will take in Chapter 4.Throughout this
hapter we have only developed and experimented with variationsof one parti
ular network stru
ture-learning algorithm. There is a wide variety ofstru
ture-learning algorithms for dis
rete Bayesian networks (see, e.g., [CH92℄, [LB94℄,[HGC95℄, and [FNP99℄), many of whi
h
ould be employed when learning mix-nets.The qui
ker and dirtier of these algorithms might be appli
able dire
tly to learningmix-net stru
tures. The more time-
onsuming algorithms su
h as hill
limbing
an beused to learn Bayesian networks on dis
retized versions of the datasets; the resultingnetworks may then be used as hints for whi
h sets of dependen
ies might be worthtrying in a mix-net. Su
h approa
hes have previously been shown to work well onreal datasets [MC98b℄. In Chapter 4 we will explore this issue further, albeit in
onjun
tion with di�erent types of
onditional distributions than the ones employedin this
hapter.While the a

elerated EM algorithm we use to learn Gaussians mixtures is veryfast for low-dimensional mixtures and
omes up with fairly a

urate models, its e�e
-tiveness de
reases dramati
ally as the number of variables in the mixture in
reases.This is the primary reason we have not yet attempted to learn mixture networks withmore than four variables per mixture. Further resear
h is
urrently being
ondu
tedon alternate data stru
tures and algorithms whi
h with to a

elerate EM in the hopesthat they will s
ale more gra
efully to higher dimensions (e.g. [Moo00℄).Other methods for a

elerating EM have also been developed in the past, someof whi
h might be used in our Bayesian network-learning algorithm instead of or inaddition to the a

elerated EM algorithm employed in this
hapter. The EM algo-rithm
an be viewed as maximizing a single fun
tion whose lo
al maxima
orrespondto lo
al maxima of the likelihood fun
tion; the E step in
reases this fun
tion by ad-justing the datapoints' estimated
lass distributions, and the M step in
reases it byadjusting the model parameters. This view justi�es many variants of EM that mayprovide faster
onvergen
e [NH98℄.Another approa
h to a

elerating the EM algorithm for Gaussian mixture modelsis to take a single pass through the dataset while heuristi
ally maintaining in memorya limited-size bu�er of datapoints whose
lass memberships are independently un
er-55

tain, and a set of summary statisti
s for the other datapoints [BFR98℄. This methodwould not provide the same drasti
 speed improvements provided by our
urrently em-ployed a

eleration method if used on low-dimensional datasets that �t
ompletelyin memory. However, it may s
ale more gra
efully to very large high-dimensionaldatasets. Exploiting this alternative a

eleration method might allow us to learnmix-nets with more parents per variable. This alternative a

eleration method
ouldalso simply be used to learn a Gaussian mixture over the entire set of
ontinuous vari-ables. We suspe
t that simple Gaussian mixtures in very large-dimensional spa
es willfrequently not perform as well as fa
torized models su
h as the ones employed here.However,
omparative experiments testing this hypothesis on real datasets would beuseful. Some preliminary experiments in Se
tion 4.8.7 are performed in whi
h globalmixture models are
ompared to the Bayesian network-based models des
ribed in thenext
hapter.Our
urrent method of handling dis
rete variables does not deal very well withdis
rete variables that
an take on many possible values, or with
ombinations in-volving many dis
rete variables. Better methods of dealing with these situations arealso grounds for further resear
h. One possibility would be to use mixture modelsin whi
h the hidden
lass variable determining whi
h Gaussian ea
h datapoint's
on-tinuous values
ome from also determines distributions over the datapoint's dis
retevalues, where ea
h dis
rete value is assumed to be
onditionally independent of theothers given the
lass variable. Su
h an approa
h has been used previously in Auto-Class [CS96℄. The EM a

eleration algorithm exploited in this
hapter would haveto be generalized to handle this
lass of models, however. Another possibility wouldbe to use de
ision trees over the dis
rete variables rather than full lookup tables, ate
hnique previously explored for Bayesian networks over dis
rete domains [FG96b℄.In Chapter 4, we will examine related approa
hes that handle
ontinuous variables aswell.The Gaussian mixture learning algorithm we
urrently employ attempts to �nd amixture maximizing the joint likelihood of all the variables in the mixture rather thana
onditional likelihood. Sin
e the mixtures are a
tually used to
ompute
onditionalprobabilities, some of their representational power may be used ineÆ
iently. TheEM algorithm has re
ently been generalized to learn joint distributions spe
i�
allyoptimized for being used
onditionally [JP99℄. If this modi�ed EM algorithm
anbe a

elerated in a manner similar to our
urrent a

elerated EM algorithm, it mayresult in signi�
antly more a

urate networks.56

Finally, further
omparisons with alternative methods for modeling distributionsover
ontinuous variables in Bayesian networks are warranted (e.g. [HT95℄, [FN00℄).

57

58

Chapter 4
Interpolating Conditional DensityTrees
4.1 Introdu
tionWhile the Gaussian mixture-based algorithms in the previous
hapter appear fairlye�e
tive at learning
omplex
onditional distributions in a reasonable amount of time,the learning algorithm is still quite time-
onsuming on large datasets with many vari-ables. Furthermore, evaluating the resulting distributions at spe
i�ed points is alsotime-
onsuming, sin
e ea
h point requires the evaluation of many Gaussians. Ap-proximations similar to those used by the a

elerated EM algorithm used to learn themodels [Moo99℄ might
on
eivably allow us to
ut down on the number of Gaussiansevaluated per point, but these approximations themselves are expensive to
omputeon a datapoint-by-datapoint basis.Tree-based models of
onditional probability distributions have histori
ally beenvery popular within the ma
hine learning
ommunity for
lassi�
ation and regressiontasks (e.g. [Qui86℄, [BFOS84℄). They
an be reasonably qui
k to learn, are qui
k toevaluate, and
an be fairly a

urate as well. In both
lassi�
ation and regressiontrees, a given tree is used to predi
t the value of some output (or \
hild") variable Xigiven a set of input (or \parent") variables ~�i; in
lassi�
ation trees Xi is a dis
retevariable, while in regression trees Xi is
ontinuous. In both kinds of trees, ea
h bran
hnode
orresponds to a test applied to one or more variables in ~�i, and ea
h of thebran
h's
hild nodes
orresponds to one of the mutually ex
lusive results of this test.59

N Y

1 2 3

1 2N Y

YN

X~(.8, .2)

X~(.3, .7) X~(.5, .5)

X~(.9, .1) X~(.1, .9) X~(.7, .3)

X~(.5, .5)

C < .5?

Q

QC < .7?

C < .2?

4

4

3

1

1Figure 4.1: An example of a
onditional density tree (or
lassif
ation tree) for pre-di
ting the distribution of a binary variable X as a fun
tion of several other variables.For example, one bran
h node might test a dis
rete variable Xd 2 ~�i and have one
hild for ea
h possible value of Xd; another bran
h in the same tree might test a
ontinuous variable X
 2 ~�i and have one
hild
orresponding to X
 � b and another
hild for X
 > b for some threshold b. Ea
h leaf l of the tree
ontains a predi
tionfor the value of Xi; depending on the task, the leaf's predi
tion may simply be themost likely value of Xi, or it may be a probability distribution over Xi. In the latter
ase, if Xi is dis
rete, this distribution is typi
ally a multinomial model with oneprobability for ea
h of Xi's possible values. (~�i are ignored on
e the leaf is rea
hed.)If Xi is
ontinuous, the
onditional distribution within a leaf is typi
ally assumed tobe a Gaussian whose mean is a either a linear fun
tion of ~�i or simply a
onstant.Figure 4.1 shows an example
lassi�
ation tree in whi
h the distribution of a binaryvariable X is predi
ted as a fun
tion of several other variables, some of whi
h aredis
rete (the Q's) and some of whi
h are
ontinuous (the C's). To �nd the distributionof X, the predi
tion algorithm simply starts at the root of the tree (shown at the topof our diagram) and follows a path down the tree's bran
hes a

ording to the valuesof the other variables until it rea
hes a leaf. For example, if the
ontinuous variableC4 is less than .5, and the ternary dis
rete variable Q1 has a value of 1, then thealgorithm would predi
t that X has a 30%
han
e of taking on its �rst possible valueand a 70%
han
e of its se
ond.Throughout the following dis
ussion, we will often refer to the
onstraints asso
i-ated with a given node of the tree. These
onstraints are simply the set of pre
ondi-tions imposed on the node by all its an
estors in the tree. For example,
onsider theleaf in Figure 4.1 in whi
h X's estimated distribution is (:1; :9). The set of
onstraintsasso
iated with this leaf is fC4 < :2; Q3 = 1g. Similarly, the bran
h node testing Q1has the
onstraint set fC4 < :5g. 60

In addition to
onventional
lassi�
ation and regression tasks, tree-based
ondi-tional density estimators have also been used for the
onditional distributions withinBayesian networks for dis
rete variables [FG96b℄. Tree-based approximations of pre-viously known joint probability distributions over sets of variables ~Si (some variablesof whi
h may be
ontinuous) have also been used in the past in order to perform in-feren
e in graphi
al models [KK97℄. In su
h trees, the density Pl(~Si) modelled withinea
h leaf l is a
onstant.In this
hapter we examine several aspe
ts of tree-based density estimators, withan emphasis on using them to obtain the
onditional distributions required for Bayesiannetworks. First, we dis
uss learning algorithms for density trees modelling joint dis-tributions P (~Si). Se
tion 4.2 des
ribes several possible types of distributions to usein the leaves of these density trees. In Se
tion 4.3 we dis
uss the
riteria we useto evaluate density trees with di�erent bran
hing stru
tures, and in Se
tion 4.4 wedis
uss algorithms for attempting to grow trees maximizing this
riteria, in
ludingmethods for
hoosing bran
h variables (Se
tion 4.4.1),
hoosing the threshold valuesfor bran
hes on
ontinuous variables (Se
tion 4.4.2), and
hoosing when to stop grow-ing the tree (Se
tion 4.4.3). We also dis
uss the simple parameter-smoothing methodwe use to prevent poor performan
e on previously unseen data (Se
tion 4.4.4).Se
tion 4.5 des
ribes learning algorithms for density trees modelling
onditionaldistributions P (Xij ~�i). Se
tion 4.5.1 des
ribes strati�ed
onditional density trees, inwhi
h the desired
onditional distribution is learned dire
tly. These density trees are
omputationally expensive to learn, but fast to evaluate. In Se
tion 4.5.2 we dis
usshow to take density trees learned to model joint distributions P (Xi; ~�i) and use themto
ompute
onditional probabilities P (Xij ~�i). Evaluating these
onditional proba-bilities
an be somewhat
omputationally expensive; however, joint density trees areeasier to learn than strati�ed
onditional density trees, and | somehat surprisingly| are often more a

urate for
onditional density estimation than strati�ed
ondi-tional density trees are, despite the fa
t that they are optimized for modelling thejoint distribution rather than the
onditional distribution. We then des
ribe a way totransform joint density trees and evaluate them approximately. The resulting densityestimator e�e
tively
ombines the fast, a

urate learning of joint density trees withthe fast evaluation of strati�ed
onditional density trees.In Se
tion 4.6 we des
ribe a stru
ture-learning algorithm for Bayesian networksgeneralizing the algorithm used in Se
tion 3.3. Se
tion 4.7 des
ribes a method for61

improving the performan
e of density tree algorithms on distributions with sharp fea-tures in their marginal distributions. In Se
tion 4.8 we perform an extensive set of ex-periments evaluating the algorithms proposed throughout previous se
tions. Finally,in Se
tion 4.9 we dis
uss related work and dire
tions for further possible resear
h.4.2 Joint density estimators for density tree leavesFirst, we des
ribe several di�erent types of density estimators Pl(~Si) for use withinthe leaves of tree-based joint density models. We
on
entrate primarily on varyingmethods of handling the
ontinuous variables ~Ci � ~Si. The dis
rete variables ~Qi � ~Siare handled identi
ally throughout all
ases examined here. Namely, within a givenleaf l, ea
h dis
rete variable is assumed to be independent of all other dis
rete and
ontinuous variables: Pl(~Si) = Pl(~Ci) YQk2 ~Qi Pl(Qk):In joint density trees where any given set of assignments ~Si = ~si is
onsistent witha single leaf l, Pl(~Si) may be rewritten as follows:Pl(~Si) =Xl0 P (l0)Pl0(~Sijl0) = P (l)Pl(~Sijl)where the sum
ollapses be
ause P (~Sijl0) = 0 for all l0 not equal to l, the unique leaf
onsistent with the parti
ular values of ~Si; P (l) is an estimate of the probability thatany parti
ular datapoint will be
onsistent with all the
onstraints imposed by thean
estor bran
hes of l; and Pl(~Sijl) is a
onditional distribution over ~Si given that~Si is
onsistent with l's
onstraints. This means that in order to learn the densityestimator Pl(~Si) that is used for all datapoints ~Si = ~si
onsistent with a given leaf l's
onstraints, we
an simply learn a density model Pl(~Sijl) over the spa
e of possibilities
onsitent with l by estimating it from all data
onsistent with l, and then s
aling theprobabilities returned by this model by our estimate of P (l).Thus, all leaf distributions we examine in this thesis may be written as:Pl(~Si) = P (l)Pl(~Cijl) YQk2 ~Qi Pl(Qkjl):We will also restri
t our attention to trees in whi
h ea
h bran
h node tests exa
tlyone variable. If the variable tested is dis
rete, the bran
h simply has one
hild node62

for every possible value of that variable. If the variable X tested is
ontinuous, thebran
h spe
i�es a threshold value b and has two
hildren
orresponding to X � band X > b. Furthermore, we assume that we have some a priori bounds on theminimum and maximum possible values of all
ontinuous variables. (This assumptionwill be dis
ussed in more detail shortly.) That is, we assume all
ontinuous values arerestri
ted within some known hyper
ube. Together with the previous
onstraint onthe form of bran
hes allowed on
ontinuous variables, this implies that the spa
e ofpossible values for Ci
onsistent with any given leaf in the tree is also a hyper
ube.We now dis
uss several possible estimators for Pl(~Cijl). In addition to des
ribinghow these joint distributions are learned and evaluated, we will also des
ribe how touse them
onditionally (that is, how to
al
ulate Pl(Xij ~�i; l)) in the
ases where thevariables in ~Ci are not modelled independently within ea
h leaf.4.2.1 Constant leaf densitiesThis density estimator for Pl(~Cijl) is very straightforward: namely, we assume a
onstant density Pl(~Cijl) = 1V olume ~Ci(l)where V olume ~Ci(l) is the volume of l's bounding box over the
ontinuous variables~Ci, as determined by the
onstraints imposed upon l by its an
estors in the tree.Sin
e this box is simply an axis-aligned hyper
ube, its volume is trivial to
ompute.Density trees using
onstant-leaf densities are fast to learn; however, as our exper-imental results will show, density trees employing other leaf distributions are usuallymore a

urate.4.2.2 Gaussian leaf densitiesAxis-aligned (diagonal
ovarian
e)This density estimator for Pl(~Cijl) assumes that the distribution of ea
h variableXk 2 ~Ci is proportional to a Gaussian and independent of all other variables. Werenormalize the distribution of ea
h variable so its integral over the range [x0; x1℄ of
63

l is 1: Pl(~Cijl) = YXk2 ~Ci �k exp(�(Xk � �k)22�2k)where �k = 1R x1x0 exp�� (xk��k)22�2k � dxk :When learning a leaf distribution, ea
h parameter �k and �k is simply set to themaximum-likelihood value for an untrun
ated Gaussian:�k = 1R RXj=1xjk; �k = 1R RXj=1(xjk � �k)2where xjk is the value that datapoint j assigns toXk and R is the number of datapoints.The �k's are then
omputed using routines for evaluating the error fun
tion (see,e.g. [PTVF92℄).A
aveat: this is not the same as �tting the best possible trun
ated and renor-malized Gaussian to the data. For example, a uniform distribution
ould be �ttedperfe
tly in the limit by letting the varian
e go to in�nity and setting the renor-malizing
onstant to
orrespondingly smaller and smaller numbers. The pro
edureoutlined above will obviously fail to �t this distribution
orre
tly, sin
e any
ovarian
e
omputed from the data will ne
essarily be �nite. Unfortunately, �tting the optimaltrun
ated and renormalized Gaussian presents a more
ompli
ated (albeit still onlytwo-dimensional) optimization problem.Full
ovarian
e / linear regressionThis density estimator for Pl(~Cijl) assumes ~Ci is distributed a

ording to a multidi-mensional Gaussian with a full
ovarian
e matrix:Pl(~Cijl) = 1(2�) d2 j�j 12 exp��12(~Ci � ~�)T��1(~Ci � ~�)�where d is the number of variables in ~Ci, �i is the ve
tor of means and � is the
ovarian
e matrix. As in the axis-aligned
ase, the mean and
ovarian
e are set totheir maximum-likelihood values~� = 1R RXj=1 ~
j; � = 1R RXj=1(~
j � �)(~
j � �)T :64

In
ases where we wish to estimate a
onditional distribution Pl(Xij ~C�i; l) fromthe joint Pl(~Ci; jl), we
an use the following relationship. Assume � is nonsingular;let K denote its inverse ��1. Without loss of generality, assume the mean ve
tor, the
ovarian
e matrix, and the inverse of the
ovarian
e matrix are partitioned as follows:~� = 0� �Xi~� ~�i 1A ;� = 0� �XiXi�Xi ~�i� ~�iXi� ~�i ~�i 1A ;K = 0� KXiXiKXi ~�iK ~�iXiK ~�i ~�i 1A(To keep the notation from getting overly
omplex, we temporarily assume there areno dis
rete parent variables and thus ~�i = ~C�i. Sin
e dis
rete variables are modelledindependently of the
ontinuous variables, they have no e�e
t on the
onditionaldistributions over the
ontinuous variables within a leaf.) We
an then break thejoint Gaussian into three parts: a Gaussian distribution over the parent variables, alinear transformation that maps an assignment of the parent variables' values to a
onditional mean on the
hild variables, and a
ovarian
e matrix for the
onditionaldistribution of the
hild variables. The Gaussian distribution over the parent variablessimply has mean ~� ~�i and
ovarian
e � ~�i. The
onditional distribution of Xi given~�i has the following mean �Xij ~�i and
ovarian
e �Xij ~�i:�Xij ~�i = �Xi +�Xi ~�i(� ~�i ~�i)�1(~�i � ~� ~�i); �Xij ~�i = (KXiXi)�1:(This is a well-known result; see e.g. [Lau96℄ for a sket
h of the derivation.) Note thatwhen the joint Gaussian's parameters are set to their maximum-likelihood values,the
onditional distribution obtained from the above equations is identi
al to the
onditional distribution we would have obtained with linear regression.Unlike the density estimator we use in the axis-aligned
ase, we do not guaranteethat the estimated joint distribution integrates to 1 over the bounds of the leaf, sin
eevaluating this integral is diÆ
ult. (Maximizing the log-likelihood of the distributionwhile taking trun
ation and renormalization dire
tly into a

ount would be evenmore diÆ
ult.) However, when estimating Pl(Xij~�i; l) for a single target variableXi and a spe
i�
 �i using the equation above, we renormalize the resulting Gaussiandistribution over Xi so it does integrate to 1 over Xi's range in l. When using a densitytree that models a joint distribution P (Xi; ~�i) in order to
ompute a
onditionaldistribution P (Xij ~�i), as we will dis
uss in Se
tion 4.5.2, we also need P (~�ijl) inorder to
ompute P (lj ~�i). While we do not guarantee in this
ase that P (~�ijl) isnormalized, it is still easy to guarantee that the resulting estimates for P (Lj ~�i) are65

normalized a
ross the set of leaves L:P (lj ~�i) = P (l)P (~�ijl)Pl0 P (l0)P (~�jl0) :Sin
e the �nal
onditional distribution P (Xij ~�i) is then a normalized weighted sumof normalized
onditional distributions Pl(Xij~�i; l), the �nal
onditional distributionis normalized as well.Gaussians (with either diagonal or nondiagonal
ovarian
e matri
es) are one ofthe most
ommonly used parametri
 models for
ontinuous probability distributions.They make a sensible
hoi
e for the leaf distributions of simple CART-like treesthat do not bran
h on the variable being modeled. However, in trees that bran
hon the variables being modeled, they
an be less e�e
tive than other types of leafdistributions. The distribution modeled in every Gaussian leaf will have a \bump"in it at the Gaussian's mean, whi
h must lie somewhere inside the leaf's boundaries(assuming a more
ompli
ated �tting me
hanism that takes trun
ation into a

ountis not being employed). In
reasing the resolution of the tree in
reases the number ofbumps, making it impossible to a

urately model arbitrary smooth distributions evenin the limit of in�nite data. The other leaf distributions dis
ussed in this thesis are
apable of representing uniform distributions as a spe
ial
ase, and therefore do notsu�er from this problem.4.2.3 Exponential leaf densitiesIn a leaf of this type, ea
h
ontinuous variable is modeled independently with anexponential distribution that is trun
ated to the leaf's range and renormalized. LetX be one su
h variable
urrently in
onsideration. If X's range in a leaf l is [xl; xr℄,then Pl(xjl) = beax, where b = 1R xrxl eaxdx = aeaxr � eaxl :Given the data D falling in leaf l, we wish to set a to maximize the total log-likelihood of the data. For simpli
ity of exposition, we assume without loss of gener-ality that [xl; xr℄ = [0; 1℄. If xj is the value that datapoint j assigns to X, then thetotal log-likelihood of the data (restri
ted to variable X) isLL(D) = Xj log� aea � 1eaxj�66

= R(a�x + log a� log(ea � 1));where R is the total number of datapoints and �x is the mean value of X a

ording tothe data. Setting the derivative of this log-likelihood to zero gives us(ea � 1)(1 + �xa)� aea = 0:This equation
an be solved for �x in
losed form:�x = aea � ea + 1aea � a= �1a + 12
oth�a2�+ 12 ;where
oth is the hyperboli

otangent. (The latter form makes it slightly more
learthat the fun
tion is antisymmetri
 around (0; 12).) Unfortunately, this relationshipbetween �x and a is not easily invertible. However, for a given value of �x, we
an useNewton's method to �nd the a for whi
h the derivative of the log-likelihood is zero.Arbitrary initial
hoi
es for a
an
ause Newton's method to diverge on this problem.For �x
lose to 0, the
orre
t value for a is approximately � 1�x ; in pra
ti
e,
hoosing� 1�x as an initial guess for Newton's method appears to work for the range 0 < �x � :5.To handle �x > :5, we use the relationship a(�x) = �a(1� �x).This tells us how to �nd the maximum-likelihood estimate for a when the leaf'srange is [0; 1℄. To �nd it for a di�erent range [xl; xr℄, we simply res
ale the leaf'srange to [0; 1℄, res
ale �x similarly, �nd the appropriate value for a in this range, andthen divide this a by xr � xl.The fa
t that �x is all that is required to optimally �t the trun
ated and renor-malized exponential distribution makes it signi�
antly simpler and faster to learnthan the linearly interpolated probability densities dis
ussed in se
tion 4.2.4. How-ever, while the estimated density within a leaf is nearly linear when �x is
lose to the
enter of the leaf, it is extremely nonlinear when �x is very
lose to one of the leaf'sboundaries, as seen in Figure 4.2. Our experimental results will reveal that densitytrees employing exponential-distribution leaves
an sometimes be even less a

uratethan ones using
onstant-distribution leaves due to
ertain properties the exponentialdistribution exhibits in these extreme
ases.
67

Figure 4.2: Trun
ated and renormalized exponential distributions for (from left toright) �x = :5; �x = :45; �x = :2; and �x = :01. Ea
h distribution's range is [0, 1℄; thedensity for �x = :5 is the
onstant 1.4.2.4 Linear leaf densitiesIn a leaf l of this type, ea
h
ontinuous variable is modeled independently with adensity that
hanges linearly a
ross the bounds of the leaf. Let X be one su
hvariable under
onsideration. Without loss of generality, assume X's range over lis [0; 1℄. (Other ranges
an be handled by s
aling all data to [0; 1℄ before parameterestimation and adjusting the resulting estimated parameters straightforwardly.) ThenPl(xjl) = (1� x)a0 + xa1, where a0 and a1 are the estimated densities at X = 0 andX = 1 respe
tively. The integral of this distribution over [0; 1℄ is a0+a12 , so a0 is
onstrained to 2� a1.Given the data D falling in leaf l, we wish to set a1 to maximize the total log-likelihood of the data:LL(D) =Xj log(a1xj + (2� a1)(1� xj)):Cal
ulating the derivative with respe
t to a1 and setting it to zero gives usXj 2xj � 1(2xj � 1)a1 + (2� 2xj) = 0;or equivalently Xj (2xj � 1) Yk:k 6=j((2xk � 1)a1 + (2� 2xj)) = 0:Solving this equation dire
tly would apparently involve �nding the roots of anRth-degree polynomial, where R is the number of datapoints in D. In some
ases, it68

0 1
X

1

2
P(X | Z=z)P(X | Z=z)0 1

Figure 4.3: The distributions P (XjZ) of the two unobserved
lasses Z = z0 andZ = z1 used to model linear interpolation.may have no real solution, sin
e the above equation does not take into a

ount the
onstraint that a0 and a1 must both be nonnegative; in these situations, the optimumestimator is obtained by setting a0 to 0 and a1 to 2, or vi
e-versa. (For example, thiso

urs any time all of the training data lies in the region X < :5.)Another way of viewing this density estimator is to assume the existen
e of anunobserved \
lass" variable Z that determines whi
h of two distributions P (XjZ =z0) and P (XjZ = z1) ea
h datapoint is generated from, where P (xjz0) is simply 2�2xand P (xjz1) is 2x. (See Figure 4.3.) Maximizing the log-likelihood then boils downto �nding the distribution P (Z) that maximizesLL(D) =Xj logXz P (Z = z)P (xjjZ = z):It is easy to prove that this log-likelihood has at most one distin
t lo
al maximumwith respe
t to P (Z) by using the fa
t that the logarithmi
 fun
tion is
on
ave. Anylo
al optimization routine
apable of handling the
onstraints on P (Z) (namely, thatPz P (z) = 1 and ea
h P (z) must be in [0; 1℄)
an be used for this optimization prob-lem. For this parti
ular density estimator, the optimization is only one-dimensional,sin
e there are only two possible values for the
lass variable, so we
ould use anyof a wide variety of line-sear
h methods. However, in se
tion 4.2.5, we will
onsidersimilar density estimators in whi
h the hidden
lass variable
an take on many morevalues, thus requiring optimizations over higher-dimensional spa
es.In su
h higher-dimensional spa
es, the Expe
tation Maximization or EM algo-69

rithm [DLR77℄ is a simple method for �nding distribution parameters that optimizethe log-likelihood of data in whi
h some variables are not always observed. The al-gorithm is an iterative algorithm with two steps per iteration. The Expe
tation or\E" step
al
ulates an expe
ted distribution over the unobserved variables given theobserved variables and the
urrent estimates for the distribution's parameters. TheMaximization or \M" step then re-estimates the distribution parameters to maximizethe likelihood of both the observed data and the unobserved variables, assuming theunobserved variables are distributed a

ording to the expe
ted values
al
ulated inthe previous E step.For the optimization problem under
onsideration here, we start with an initialguess P0(Z) and iteratively generate better estimates P1(Z); P2(Z); : : : as follows:� E step: for ea
h datapoint j and ea
h possible hidden variable value zk for thatdatapoint,
al
ulate Pt(zkjxj) = �jP (xjjzk)Pt(zk), where �j = Pzk P (xjjzk)Pt(zk).� M step: for ea
h possible value zk assigned to Z,
al
ulate Pt+1(zk) = PRj=1 Pt(zkjxj).Sin
e the log-likelihood fun
tion has only one lo
al maxima, we expe
t the
hoi
eof P0(Z) to have little e�e
t on the �nal out
ome. A natural
hoi
e is the uniformdistribution. The algorithm
an be terminated when the in
rease in log-likelihoodbetween iterations be
omes lower than a spe
i�ed threshold, or terminated after some�xed number of iterations.It is not diÆ
ult to prove that ea
h iteration of the EM algorithm in
reases thelog-likelihood of the data, or at least does not de
rease it [DLR77℄. Proving thatthe algorithm a
tually
onverges to a lo
al maxima of the log-likelihood fun
tion ismore involved (again, see [DLR77℄ for des
riptions of the ne
essary
onditions), butin pra
ti
e it is rare for the algorithm to do otherwise.Sin
e all the P (xjjzk)'s in this parti
ular
lass of density estimator are �xed,they
an be pre
omputed and
a
hed before EM iterations are started. Furthermore,for any given leaf in the density tree, there is only one parameter that needs to beestimated for ea
h
ontinuous variable. In the early stages of the tree-growing pro
ess,there will typi
ally be many more datapoints per leaf than are ne
essary to estimatethis parameter to a reasonable level of a

ura
y, and the
ost per EM iteration s
aleslinearly with the number of datapoints used. Therefore, if there are more than somenumber Rmax of datapoints mapped to the leaf, we randomly sample Rmax of them70

(without repla
ement) and use only those datapoints while determining the leaf'sdistribution parameters.Density trees using independent linear interpolations take somewhat longer tolearn than those using exponential distributions, but ea
h leaf still only requiresone independent parameter per
ontinuous variable being modeled. Furthermore,our experimental results will show that they are typi
ally more a

urate than treesemploying exponential distributions.4.2.5 Multilinear leaf densitiesIn a leaf l of this type, the density of all
ontinuous variables ~Ci is modeled jointlyrather than independently. Similarly to how ea
h individual variable was handledin the previous se
tion, the joint distribution over ~Ci
an be expressed as a mixturemodel with hidden
lass variable Z:Pl(~Ci) =Xzk P (zk)P (~Cijzk)where ea
h
lass distribution P (~Cijzk) is �xed. Now, however, there are 2d di�erentpossible values for the
lass variable, where d is the number of variables in ~Ci. Ea
hof these values
orresponds to one of the 2d
orners of the d-dimensional hyper
uberepresenting the leaf's bounds. As before, for the purposes of exposition we assumewithout loss of generality that these bounds are [0; 1℄d. For a given value zk of Z forwhi
h the
orresponding
oordinates in f0; 1gd are (yk1 ; yk2 ; : : : ; ykd)T ,P (~Ci = (
1;
2; : : : ;
d)T jzk) = 2d dYj=1(1� jykj �
jj):Figure 4.4 shows an example
al
ulation of su
h a P (~CijZ).As in the previous se
tion, we pre
ompute all P (xjjzk)'s and then use the EMalgorithm to adjust P (Z) towards the distribution maximizing the likelihood of thedata.It might appear at �rst glan
e that evaluating Pl(~Ci) takes �(d2d) time, sin
e itinvolves a sum over 2d addends ea
h of whi
h is produ
t of d multipli
ands. However,with a bit of additional programming
omplexity, we
ompute ea
h produ
t in amor-tized
onstant time by reusing the produ
t of the multipli
ands it has in
ommonwith the previously
omputed produ
t. This redu
es the evaluation time to �(2d).71

C1

C 0

P(.4, .7 | z) =
4*(1-|0-.4|)*(1-|1-.7|)

2

=4*.6*.7=1.68

0

1

1

z

zz

0

2 3

z1

(.4, .7)

.3

.4

Figure 4.4: An example
al
ulation of P (C0 = :4; C1 = :7jZ = z2), where z2 is thehidden
lass value
orresponding to the
orner (C0 = 0; C1 = 1).In order to evaluate a
onditional probability Pl(Xij ~�i) (where we on
e againignore the possibile existen
e of dis
rete variables in ~�i in order to simplify the nota-tion), we may use the equationPl(xij ~�i) = Pl(X = xi; ~�i)Pl(~�i) = Pl(X = xi; ~�i)Pl(Xi = 0:5; ~�i)where the latter equation holds be
ause integrating out Xi results in a multilinearinterpolation over ~�i in whi
h ea
h
orner's density is an average of the densities ofthe two
orners in the original interpolation that have the same
oordinates for ~�i.This same averaging
an be a
hieved by simply setting Xi = :5 in the original jointdistribution.This is not ne
essarily the most eÆ
ient way to
ompute Pl(Xij ~�i), but it doeslead to a potentially interesting observation. Suppose that rather than maximizingthe log-likelihood of the joint Pl(Xi; ~�i), we wished to maximizine the
onditionallog-likelihood Pl(Xij ~�i). This
onditional log-likelihood
an be written as the jointlog-likelihood of the data minus the joint log-likelihood of a phantom dataset inwhi
h ea
h value for Xi is repla
ed with 0.5. Thus, many optimization algorithmsone might use to maximize the joint log-likelihood
an be applied straightforwardlyto maximizing the
onditional log-likelihood, as long as the algorithms are
apable72

of handling datapoints with \negative weight." EM would probably fail if used inthis manner, sin
e it is un
lear what would keep it from assigning negative values tosome P (Z)'s. Other optimization algorithms that have been adjusted to take P (Z)'s
onstraints into a

ount (for example, gradient-based methods employing \softmax"
hanges of variables [Bri90℄) might be usable.As in se
tion 4.2.4, when �tting P (Z) for a given leaf, we restri
t the number ofdatapoints used for the �t in order to in
rease
omputational eÆ
ien
y. However,sin
e the number of parameters required for multilinear interpolation s
ales with 2d,we s
ale the number of datapoints used with 2d as well.Our experimental results will show that multlinearly interpolated leaf distributionstypi
ally provide the most a

urate density estimation. However, the a

ura
y is nottoo mu
h greater than that provided by using one independent linear interpolation pervariable per leaf, and it does
ome at
onsiderable additional
omputational expense.4.3 Tree evaluation
riteriaNow that we have dis
ussed several possible types of density estimators we mightwish to use in the leaves of density trees, we move on to dis
ussing di�erent methodsfor determining density tree stru
tures. This immediately raises the question of howwe will evaluate two di�erent density trees or subtrees in order to determine whi
h is\better". Even if we know the exa
t distribution P (~X) from whi
h the �nite datasetgiven to the density estimator had been generated, there are many possible
riteriawe
ould use to measure the quality of the resulting estimated distribution P̂ . Forexample, in the statisti
al literature it is
ommon to use the integrated squared errorZ [P̂ (~x)� P (~x)℄2d~x:Other possibilities in
lude the L1 normsup~x jP̂ (~x)� P (~x)j;the L1 norm Z jP̂ (~x)� P (~x)jd~x;and the Kullba
k-Leibler divergen
eD(P jjP̂) = Z P (~x) log P (~x)P̂ (~x)d~x73

= �H(P (~X))� Z P (~x) log P̂ (~x)d~x;where H(P (~X)) = � Z P (~x) logP (~x)d~xis the entropy of the true distrubution P (~X). Sin
e H(P (~X)) is
onstant when
om-paring di�erent estimates P̂ (~X), minimizing the Kullba
k-Leibler divergen
e betweenP̂ and P is the same as maximizingZ P (~x) log P̂ (~x)d~x;whi
h is simply the average log-likelihood we would expe
t P̂ (~X) to assign to a pointrandomly generated from the true distribution P (~X).Be
ause we will generally not know the true distribution P (~X) from whi
h theoriginal data was generated, we approximate this average log-likelihood by evalutingit over a �nite set of \holdout" datapoints that were not used to �t the model P̂ (~X)under
onsideration. In the limit as the size of the holdout set approa
hes in�nity, thedensity estimator sele
ted via this average log-likelihood
riterion is the most likelyhypothesis as to P (~X)'s form out of all the forms evaluated. Furthermore, it alsohas the property that it is the best model with whi
h to
ompress data generatedrandomly from P (~X) in the limit that an in�nite amount of pre
ision is required forea
h
oded value of ~X. Sin
e this thesis is fo
ussed partially on potential appli
ationsto
ompression problems, this makes it a natural
riterion for us to use.There are a few
aveats, however. Many real-life probability densities are in�niteat
ertain points. For example, a supposedly \
ontinuous" value might a
tually bequantized so that it always exa
tly takes on one of 1024 values. The density at ea
hof these points is then a delta fun
tion; at all other points it is zero. Alternatively, asensor may \
lip" data so that all input past a
ertain range is mapped pre
isely tosome maximum representable output; the output variable's density at this maximumwill also be a delta fun
tion. In su
h situations, log-likelihood is largely a meaning-less measure. The relative log-likelihoods of two di�erent density estimators will bedetermined almost wholly by exa
tly how they handle the data lying in these regionsof in�nite density. Fair
omparisons between di�erent density estimation methodson su
h data would require ensuring that they handled these points in an essentiallyidenti
al fashion | a tedious and rather diÆ
ult task. When using density estimatesto
ompress real-valued data, we normally only
are about a �nite level of pre
ision74

and disregard all but the �rst few signi�
ant �gures of the data; thus, we
ould
on-
eivably alter all the density estimators examined to take this �nite pre
ision intoa

ount and then
ompare the number of bits required to en
ode a given level ofa

ura
y using the resulting models. However, again, doing so and ensuring that it'sdone fairly would be tedious and diÆ
ult, sin
e most density learning algorithms havenot been designed with that parti
ular task in mind. Therefore, for the purposes ofevaluating di�erent density learning algorithms in this thesis, we assume all datasetsare generated from distributions in whi
h all densities are �nite. To ensure this isthe
ase, random noise is added to all datapoints in all the real-world datasets. Theresulting evaluations
an be seen as
rude approximations to how well the densityestimates would perform if used to
ompress real data to a pre
ision
orrespondingto the magnitude of the noise.Another reason the log-likelihood
riterion is not quite
orre
t for
ompressionappli
ations is that the
ost of en
oding the density estimator itself is not takeninto a

ount. In many
ompression appli
ations it might be more appropriate touse a s
oring metri
 that uses the log-likelihood of the training data (rather thanof an independent hold-out set) minus a penalty term that s
ales with the numberof parameters required for the model, su
h as the Bayesian Information Criterion(BIC) [S
h78℄. However, when
ompressing very large datasets it is often
ompu-tationally infeasible to use the entire dataset while learning a density model, and arelatively small random sample must be used instead. In su
h situations, the totalnumber of bits required for
ompression will be determined primarily by the learnedmodel's a

ura
y on data that was never presented to the learning algorithm, and thenumber of bits required to en
ode the model will only be of se
ondary importan
e |and therefore the log-likelihood
riterion employed here may in fa
t be more suitablethan
riteria employing penalized training-set log-likelihoods su
h as the BIC.4.4 Tree-growing algorithmsNow that we have dis
ussed the evaluation of
andidate density trees, we examine al-gorithms for growing these
andidate trees. In this thesis we will restri
t our attentionprimarily to \top-down" learning algorithms of the following general form:� Either de
ide to model the data as a leaf, or de
ide to bran
h. If not bran
hing,learn a leaf distribution (of one of the distribution types des
ribe in se
tion 4.2)75

and return it. Otherwise:{ De
ide what variable to bran
h on; if this variable is
ontinuous, also de
ideupon a threshold value. Create a bran
h node
orresponding to this bran
hvariable (and threshold value). In the
ase of a dis
rete-variable bran
h,the bran
h node has one
hild pointer
orresponding to ea
h possible valueof the variable. In the
ase of
ontinuous bran
h variables, the bran
h nodehas two
hild pointers: one for
ases in whi
h the bran
h variable is lessthan or equal to the threshold, and another for
ases in whi
h the bran
hvariable is greater than the threshold.{ Set ea
h
hild pointer of the bran
h node to the result obtained by re
ur-sively
alling the tree-learning algorithm on the subset of the data satisfy-ing the
onstraints asso
iated with that parti
ular
hild.In addition to the data, the tree learning algorithm is supplied with a set of
onstraints. Ea
h
ontinuous variable Xi has a
onstraint in the set of the formai � Xi � bi. Ea
h dis
rete variable Qi either has no
onstraints or has a
onstraint ofthe formQi = qi for some value qi. The algorithm is initially supplied with
onstraintsover the
ontinuous variables
orresponding to a priori known bounds on their valuesand no
onstraints over the dis
rete variables. When
alling itself re
ursively to learna bran
h node's
hild, the algorithm adds the appropriate dis
rete-variable
onstraintor makes the appropriate
ontinuous-variable
onstraint more spe
i�
 a

ordingly.We now dis
uss di�erent methods for making the de
isions required by the abovegeneral algorithm.4.4.1 Bran
h variable sele
tion strategiesIf we have de
ided to model the
urrent data subset with a bran
hing density treerather than a simple leaf distribution, then we need to de
ide whi
h variable to bran
hon. One simple possibility is to have the variables \take turns" a

ording to somearbitrary variable ordering as the tree's depth in
reases, with the ex
eption that ea
hdis
rete variable
an only ever be bran
hed on on
e. For example, in a joint densitytree over two
ontinuous variables, we might arrange the tree so that the root node
an only split on variable C1; all nodes dire
tly below the root node
an only spliton variable C2; all nodes two levels below the root node
an only split on varible C176

Figure 4.5: Example density trees learned using the turn-based bran
hing
riteria(left) and the greedy bran
hing
riteria (right) on a syntheti
 dataset.again; and so forth. If the split threshold
hosen for ea
h bran
h node is always themidpoint of the range of its bran
hing variable, and the tree is of
onstant depth,then this imposes a grid stru
ture over (C1; C2). If the depth of the tree is allowedto vary instead, this results in a partitioning in whi
h all leaves are either squares orre
tangles with aspe
t ratios of 1:2; an example of su
h a tree is shown in the lefthalf of Figure 4.5. (When the bounding box over the domain is a hyper
ube and splitpoints are always in the middle of the bran
hing variable's
urrent range, having thevariables \take turns" splitting a
hieves the same e�e
t as always splitting on thevariable with the widest
urrent range.)Another bran
h variable sele
tion method used more
ommonly in de
ision andregression tree learning algorithms (e.g. [Qui86℄ and [BFOS84℄) is greedy sele
tion.When employing this variable sele
tion strategy, a \density stump" of depth one isgrown for ea
h possible bran
h variable. Ea
h of the stumps is evaluated; the beststump is
hosen, its
hildren leaves are thrown away, and the learning algorithm is
alled re
ursively to learn subtrees to repla
e the old
hild leaves.1 An example of atree learned using this greedy strategy is shown in the right half of Figure 4.5.The greedy bran
h variable sele
tion method is obviously more
omputationallyexpensive than the \taking turns" approa
h, but sometimes lead to signi�
antly more1A
tually, for
omputational eÆ
ien
y we pass the best stump's
hildren leaves to the re
ursively
alled subtree learners rather than throw them away immediately, so the subtree learners don't haveto relearn the leaves when de
iding whether to prune.77

a

urate density estimators, as shown in supplemental experimental results in Ap-pendix A.1.4.4.2 Split point sele
tionWhen a bran
h node tests a
ontinuous variable Xi, we must
hoose the thresholdvalue t it employs for its test. If the
urrently valid range of Xi is [a; b℄, one simple
hoi
e is the midpoint t = (a+b)=2. In addition to being
omputationally inexpensive,this
hoi
e has a few other advantages. If the density tree is being used for
ompres-sion, this means the value of t does not need to be en
oded in the model, whi
h savesa few bits. Furthermore, splits in di�erent parts of the density tree will have a greatertenden
y to \line up" with ea
h other by employing the same thresholds. This
anredu
e the
omplexity of the tree that results when we \
onditionalize" the originaldensity tree as des
ribed in se
tion 4.5.4.If none of these advantages are of parti
ular
on
ern, another possible split pointsele
tion algorithm is as follows:� Sele
t a set D0 of up to, for example, 500 datapoints at random. Sort thema

ording to the values they assign to Xi.� Generate a set of
andidate split thresholds t1; : : : ; tK based on these sorteddatapoints. For example, we might
onsider all thresholds that lie halfwaybetween two distin
t adja
ent values in the sorted list of Xi values.� Pi
k the
andidate split point tj that would maximize the log-likelihood of D0if we used a stump with tj as a split point and
onstant-density
hild leaves. Ifthere are lj datapoints in D0 less than tj and rj datapoints greater than tj, thislog-likelihood is a
onstant pluslj log ljtj � a + rj log rjb� tj :These evaluations
an be performed eÆ
iently by walking through the sortedlist of Xi values and generating the
andidate split points tj from these values\on the
y".Naturally, we would expe
t this split-point
hoosing algorithm to help the mostwhen the density tree is a
tually employing leaves with
onstant densities (as de-78

s
ribed in Se
tion 4.2.1). An analogous algorithm tuned for leaves employing ex-ponential or Gaussian densities (as in Se
tion 4.2.3) would also be feasible, but werefrain from examining this possibility further in this thesis. An analogous algorithmtuned for leaves employing linear or multilinear interpolation would likely be too
om-putationally expensive, however, sin
e these leaf densities
annot be �t using smallsets of suÆ
ient statisti
s that
an be updated qui
kly while s
anning through thesorted list of Xi values.One potential pitfall with this split point
riterion is that it tends to favor \end-
ut" splits | that is, splits near the boundaries of leaves. This phenomenon hasbeen noted before in algorithms for tree-based
lassi�
ation and regression (see,e.g., [MM73℄ and [BFOS84℄). As a
rude way of dealing with this problem, we refrainfrom using any split point su
h that one of the two leaves would a

ount for less than10 of the datapoints. (If there are fewer than 20 datapoints, we refrain from usingthis split point
riterion entirely and simply use the midpoint of the bran
h variable's
urrent range.) Informal experiments not des
ribed further in this thesis have shownthis
an signi�
antly in
rease the a

ura
y of density trees learned while using thissplit point
riterion.Most of our experiments in this thesis will use the simpler midpoint thresholdmethod. Supplemental experiments
omparing this method with the more
ompli-
ated method des
ribed above are des
ribed in Appendix A.1.4.4.3 Pruning strategiesAssuming we have some method for
hoosing variables on whi
h to bran
h, we muststill de
ide whether any bran
h will result in a density tree that will perform asa

urately on unseen data as a simple leaf distribution would perform. One possiblemethod, whi
h we refer to as stopping, is to have the learning algorithm return a leafwhenever it determines (via evaluation on a holdout set or some other method) thata leaf models the
urrent data subset more a

urately than any single-level densitystump it has generated and tested. Another possible method, referred to as post-pruning, is for the learner to learn a subtree potentially mu
h deeper than one leveland then
ompare the estimated a

ura
y of this entire subtree to the estimateda

ura
y of a leaf. When learning this deeper subtree, some other ad-ho
 stopping
riterion is used, su
h as requiring a minimum number of datapoints before allowinga bran
h to be
onsidered. 79

Figure 4.6: Example density trees learned on a syntheti
 dataset using stopping (left)and post-pruning (right) with
onstant-density leaves.Whether stopping or post-pruning generates more a

urate results depends onother aspe
ts of the tree learning algorithm. If very simple density estimators are usedin the leaves, and if few di�erent
ombinations of bran
hing variables and bran
hingthresholds are evaluated, then the stopping algorithm will often terminate with aleaf in situations where a density tree of depth two or more would have done mu
hbetter. For example, Figure 4.6 shows two density trees learned on a syntheti
 datasetwhere the leaves are of
onstant density and only one bran
h variable/bran
h treshold
ombination is attempted. The density tree on the left, whi
h was learned withstopping, has a large region towards the upper-right that is
learly not of
onstantdensity but that is modeled with a single leaf. This leaf was not split be
ause ithas roughly as many datapoints in its upper half as in its bottom half; by
han
e,the holdout set had a slightly lower log-likelihood on the
andidate density stumpemploying this top vs. bottom split than it did on the leaf
overing the entire area,so the stopping
riterion terminated with a leaf prematurely. The density tree on theright learned with post-pruning does not su�er from this obvious problem.On the other hand, if the density estimators used in the leaves are more
exible,and many
andidate bran
h variable / bran
h threshold
ombinations are tried, thenit be
omes less likely that the stopping algorithm will stop mu
h too early. Further-more, in su
h situations it be
omes in
reasingly likely that any �nite holdout set usedto evaluate di�erent
hoi
es of bran
h variables / bran
h threshold will happen tohave an ina

urately high estimated log-likelihood for one of those
hoi
es, and over-80

�tting will result. When over�tting be
omes a more pressing issue than under�tting,trees learned with post-pruning often perform slightly worse than trees learned withstopping. This e�e
t
an be ameliorated by using one holdout set to evaluate di�er-ent bran
h variable / bran
h threshold
ombinations and a se
ond separate holdoutset to de
ide whether to use the best of these
ombinations or to use a leaf instead.However, even with an independent holdout set for pruning, post-pruning
an stillpeform worse than than stopping. Furthermore, learning trees with post-pruning ismore
omputationally expensive, both in terms of time and memory requirements.Despite these issues, in most of our experiments we will use post-pruning ratherthan stopping. While post-pruning is often slightly less e�e
tive on average, the qual-ity of density trees learned with stopping has a higher varian
e and is more sensitiveto other aspe
ts of the density tree learning algorithm. Supplemental experiments
omparing post-pruning versus stopping are in
luded in Appendix A.1.Another approa
h previously used in
lassi�
ation and regression trees (see, e.g.[BFOS84℄) is to use the holdout set not to dire
tly determine whi
h nodes of thetree to prune, but instead use it to �nd a good value for a single
omplexity penalty
oeÆ
ient that is then used a
ross the entire density tree to determine whi
h bran
hesto prune. This approa
h might result in more a

urate trees than the ones we haveprodu
ed using the holdout sets more dire
tly, but we leave
omparisons along theselines for future resear
h.4.4.4 Parameter smoothingThroughout the dis
ussion so far, we have been assuming the use of maximum-likelihood estimates for P (L = l) (the probability distribution over whi
h leaf l agiven datapoint is
onsistent with) and for Pl(~Sijl) (the
onditional probability den-sity over a set of variables ~Si given that the datapoint is
onsistent with the
onstraintsasso
iated with a given leaf l). However, if we are using log-likelihood as our
rite-rion for density estimator quality, su
h maximum-likelihood estimates
an performarbitrarily poorly on data not seen during the training pro
ess. For example, it maybe the
ase that in one of the tree's bran
hes on a dis
rete variable X, none of thedatapoints
onsistent with the
onstraints of that bran
h's an
estors in the tree hasX set to some parti
ular value x. In su
h a situation, a maximum-likelihood tree-learning algorithm would set the bran
h's
orresponding
hild node to a leaf l andassign P (l) = 0. However, there is still a
han
e that a datapoint
onsistent with81

l's
onstraints will be seen later; the log-likelihood of su
h a point would be �1,thus making it irrelevant how well the density tree did on any other datapoints beingevaluated. Alternatively, a leaf l may assign a probability Pl(~Sijl) = 0 to some
ombi-nations of values for ~Si. For example, in the
ase of linear or multilinear interpolation,it is often the
ase that the density at some of the leaf's edges or
orners will
onvergeto zero.One theoreti
al way to address this problem would be to use a Bayesian analysisin whi
h the set of parameters ~� in a density tree with a �xed stru
ture T are givena prior distribution PT (~�). The data D
ould then be used to �nd these parameters'posterior distribution PT (~�jD), and then the probabilility of any given datapointPT (~sijD)
ould be
al
ulated by integrating over PT (~�jD):PT (~sijD) = Z PT (~�jD) � PT (~sij~�)d~�:When the distributions PT (~sij~�) and priors PT (~�) are of
ertain forms, the above in-tegral
an be
al
ulated in
losed form. For example, for a single dis
rete variable Q,the integral
an be evaluated in
losed form if PT (Qj�) is a multinomial distributionand the prior over its parameters PT (~�) is a Diri
hlet distribution. It
an similarly beevaluated if PT (~�) is a Gaussian distribution and the priors over its parameters is anormal-Wishart distribution. However, it is not
lear whether some of the leaf densityestimators examined here (su
h as the linear and multilinear density estimators) areamenable to this form of analysis. Instead, we rely on a
ommonly used and mu
hsimpler te
hnique for working around the problems with maximum-likelihood estima-tion: namely, we adjust the distribution slightly towards the uniform distribution inan ad ho
 manner.One possible smoothing method is to simply learn a maximum-likelihood densitytree PT (~Si) on the training data and then let the �nal estimated distribution P 0(~Si)be a mixture model P 0(~Si) = (1� �)PT (~Si) + �PU(~Si)where PU(~Si) is a \sla
k" distribution that assigns nonzero probabilities to all possiblevalues of ~Si. If a bounding box is known a priori for the
ontinuous variables ~Ci 2 ~Si,then PU(~Ci)
an be a uniform distribution assigning equal probability densities toall points lying within that bounding box. In our experiments, will we assume su
hbounding boxes are known; when peforming
omparative experiments with real-lifedatasets, we will \
heat" and generate these bounding boxes using all the data rather82

than just the training set. However, this is only done for
onvenien
e; one
ouldalways model PU(~Ci) with a wide Gaussian or Cau
hy distribution instead, where thes
ale for ea
h variable
ould be set a

ording to the range that variable's values takeon in the training data. In our experiments we will generally set � to 12jD0j , where jD0jis the number of datapoints used to train the density tree. The performan
e of thedensity estimators appears fairly insensitive to � as long as � is set within an orderof magnitude or so of this heuristi
ally
hosen value.Another possible smoothing method is to smooth P (L) and ea
h Pl(~Sijl). Themaximum-likelihood estimate for P (l) is the fra
tion of datapoints
onsistent with l's
onstraints. Let aj(l) denote the jth an
estor node of l in the density tree | that is,a0(l) = l, a1(l) the immediate parent of l, a2(l) the parent of the parent of l, and soforth, up to ad(l), where d is l's depth in the tree. Then P (l)
an also be expressedas P (l) = d�1Yj=0 jDaj+1(l)jjDaj(l)jwhere jDnj is the number of datapoints
onsistent with the
onstraints asso
iatedwith a node n in the tree. We
an smooth P (L) by smoothing ea
h of the fra
tionsin this produ
t: P (l) = d�1Yj=0 jDaj+1(l)j+ �jDaj(l)j+ ��(aj+1(l))where �(n) is the number of
hildren of a given bran
h node n. That is, we essen-tially pretend that at ea
h bran
h node in the tree, some small additional number� of \phantom datapoints" are
onsistent with ea
h of the node's
hildren. (In ourexperiments we generally set � to 0.5; again, the a
tual value used appears to havelittle impa
t on the performan
e of the resulting density estimators as long as it iswithin an order of magnitude or so 0.5.) The method for smoothing Pl(~Sijl) dependson the parti
ular density estimator being used. For a dis
rete variable Q, we
ansimply smooth the maximum-likelihood distribution by assuming the existen
e of �\phantom datapoints"
onsistent with ea
h possible value of Q. Constant-density
ontinuous distributions do not need to be smoothed. Exponential and linear densi-ties
an be smoothed by adding \phantom datapoints" lo
ated at the
enter of theleaf's bounding box. A Gaussian distribution
an be smoothed by averaging into itsmean ve
tor and
ovarian
e matrix the e�e
ts of \phantom datapoints" distributeda

ording to a Gaussian with a standard deviation proportional to the leaf's widthand a mean lying in the
enter of the leaf.83

There is no theoreti
ally
ompelling reason to smooth P (L) and the Pl(~Sijl)'s ifthe mixture-model method of smoothing is also already being employed, or vi
e versa;informal experiments seem to indi
ate that it makes little di�eren
e whi
h is used,as long as one or both are. However, smoothing P (L) and the Pl(~Sijl)'s does havethe pleasant side e�e
t of removing the need for many annoying spe
ial-
ase
he
ksin the implementation. We will generally employ both methods of smoothing for theexperiments in this thesis.4.5 Conditional density treesNow that we have dis
ussed in detail how density trees
an be learned and used forjoint probability distributions P (~Si), we move on to dis
uss learning and using densitytrees for
onditional distributions P (Xij ~�i).One might attempt to alter the algorithms dis
ussed in the previous se
tion so thatonly
onditional distributions Pl(Xij ~�i; l) are modeled in the tree's leaves, and so thatthe
onditional log-likelihood of the datapoints is used as the
riteria for determiningthe stru
ture of the tree. However, this immediately raises the question of whethersu
h density trees should be allowed to
ontain bran
h nodes that test the value ofXi. If su
h bran
hes are not allowed, then the resulting density tree may not be ableto represent the
onditional distribution a

urately, assuming the leaf distributionsare restri
ted to simple parametri
 forms. On the other hand, if su
h bran
hes areallowed at arbitrary points in the tree, then learning a tree that represents a valid
onditional probability distribution be
omes diÆ
ult. In order for the density tree torepresent a valid
onditional probability distribution, it must be the
ase thatZ P (Xij~�i)dXi = 1for all possible values of ~�i. Unfortunately, it appears that ensuring this
onstraint issatis�ed requires us either to impose severe restri
tions on the a

ura
y of the densityestimator or to reason about the stru
tures of di�erent subtrees simultaneously, thusdestroying the divide-and-
onquer nature of the learning algorithm.To see this,
onsider the following example in whi
h we attempt to learn a
ondi-tional density tree P (XjZ) where X and Z are both real-valued with values between 0and 1. For simpli
ity, assume we only
onsider bran
hes that split onX 2 f:25; :5; :75gor Z = :5, and that the leaves are of
onstant density. The �nest possible density tree84

obeying these
onstraints is a simple dis
retization of the X �Z spa
e into 8 bu
kets.Suppose the training data had the following joint distribution over these 8 bu
kets:
X

Z

.05

.25

.15

.05

.15

.15

.00

.20
0 1

1

The density tree with a root node splitting on X = :5 represents a partitioning ofthese 8 bu
kets into two sets of four. This partitioning is shown to the left, and thestru
ture of the
orresponding maximum-likelihood
onditional density tree is shownto the right:
X

Z
0 1

1

.05

.25

.15

.05

.15

.15

.00

.20
.3 .7

N Y

X > .5?

Here in ea
h of the density tree's leaves we have written not the
onditional proba-bility density P (XjZ) but the total
onditional probabilitymass
ontained in the leaf:namely, the integral of the
onditional probability density P (XjZ) over the range ofX in the leaf.Now suppose we re�ne ea
h bran
h of this tree by splitting on Z = :5, and thensplit ea
h of the resulting new nodes on X = :25 or X = :75. The
orrespondingpartitioning and maximum-likelihood
onditional density tree would look like this:
X

Z
0

1

.05

.25

.15

.05

.15

.15

.00

.20
1

.10

X > .5?

Z > .5? Z > .5?

X > .25? X > .25?

.10 .40

X > .75? X > .75?

.00 .50 .30 .30 .30

YN

N Y

NY

N Y

NYN N Y Y

85

Here ea
h leaf's
onditional probability mass is two times the fra
tion of the datalying in the
orresponding bu
ket, sin
e half of the data happens to have X > :5 andhalf of the data does not. So, for example,P (:5 < X < :75j0 < Z < :5) = P (:5 < X < :75; 0 < Z < :5)P (0 < Z < :5)= :25:05 + :05 + :25 + :15 = :25:5 = :5:However, suppose that after evaluating this re�ned tree we de
ide we don't a
tuallyhave enough data to justify the Z > :5 split in the X < :5 half of the tree, and insteaduse a density tree stru
ture like this:
X

Z
0

1

.05

.25

.15

.05

.15

.15

.00

.20
1

X > .5?

Z > .5?

X > .75? X > .75?

Y

N Y

NN Y Y

??? ??? ??? ???

.30?

N

In su
h a situation, how would we
ompute, say, P (:5 < X < :75j0 < Z < :5) andP (:75 < X < 1j0 < Z < :5)? If we naively
ompute them using the same equationas before while leaving the leaf for P (X < :5) at 0.3 , then the resulting density treewill not model a valid
onditional distribution, sin
eP (X < :5j0 < Z < 1)+P (:5 < X < :75j0 < Z < :5)+P (:75 < X < 1j0 < Z < :5) 6= 1:Thus,
hanging the stru
ture of the left-hand half of the tree would require us toalter the leaf values in the right-hand half of the tree as well: the divide-and-
onqueralgorithm that worked for joint density trees does not work here for
onditional densitytrees. We
ould attempt to regain the divide-and-
onquer nature of the algorithm bynoti
ing the .3 / .7 probability mass ratio at the root-level split and requiring thatP (0 < X < :5jZ) must be .3 and P (:5 < X < 1jZ) must be .7 for all values ofZ regardless of further subtree re�nements; however, this approa
h would obviously
ause most
onditional probability distributions to be unrepresentable regardless ofhow mu
h data was used during the learning pro
ess.86

4.5.1 Strati�ed
onditional treesMost
ommon tree-based learning algorithms su
h as CART [BFOS84℄ and ID3 [Qui86℄only test the parent (or \input") variables at their bran
hes, and so the problem raisedin the previous se
tion is not an issue for them. Ea
h leaf in su
h trees generally
on-tains a simple parametri
 distribution of the
hild (or \output") variables, or evenjust a point estimate of the
hild variables in the
ase of regression. However, thereis no reason in prin
iple to stop at a simple parametri
 distribution for the
hild vari-able on
e the bran
hing on parent variables has �nished. Instead, one
an employ astrati�ed tree in whi
h any path from the root of the tree to a leaf �rst passes througha sequen
e of bran
h nodes that only test the parent variables, and then throughanother sequen
e of bran
h nodes that only test the
hild variables. A strati�ed
on-ditional density tree for the example problem dis
ussed in the previous se
tion mightlook like this:
X

Z
0

1

.05

.25

.15

.05

.15

.15

.00

.20
1

YN

N Y

N

N Y

Y N Y

Z > .5?

X > .5? X > .5?

X > .75?.20

.50 .30

X > .25?

.40 .00

.60

where for
larity we have again listed the
onditional probability masses inside theleaves rather than the
onditional probability densities. When the density tree stru
-ture is restri
ted in this fashion, it is simple to a

ount for the
onstraint that P (Xij ~�i)integrated over X must equal 1 for all ~�i, sin
e all the
onditional probability massfor any value of ~�i lies in a single subtree.As our experimental results will show, allowing su
h bran
hes on the output vari-able
an result in
onditional density trees that are mu
h more a

urate than
ondi-tional density trees with bran
hes only on the input variables and simple parametri
distributions at the leaves. Unfortunately, the problem of sear
hing for good strati�ed
onditional trees is more diÆ
ult than the problem of sear
hing for good joint densitytrees. When learning joint density trees, the performan
e of the trees is somewhatinsensitive to the exa
t order in whi
h di�erent variables are used in bran
hes; if the87

wrong variable happens to bran
hed upon at one level, at least it
an still be bran
hedupon at the next. This relative insensitivity is what makes greedy algorithms feasible.Strati�ed
onditional density trees, on the other hand, have the
onstraint that on
ethe output variable is tested in a bran
h, the input variables
an never be tested againin any further bran
hes below that bran
h. Furthermore, if the density estimatorsbeing used in the leaves are parti
ularly simple, su
h as
onstant densities, testing aproposed bran
h by learning a one-level \stump" is a poor approa
h. For example,suppose we wish to test whether bran
hing on a parent variable Z at the root ofthe density tree is a good idea. If we grew a one-level stump with
onstant-densityleaves, ea
h of these leaves would still have a
onditional probability mass of 1, andthe
onditional log-likelihood of the data would be pre
isely the same as if we hadnot bran
hed on Z at all. It is only after further bran
hing on Xi that the usefulnessof bran
hing or not bran
hing on Z at the top of the tree
an be gauged with anya

ura
y.Therefore, when learning strati�ed
onditional density trees, we take the followingapproa
h. We use a re
ursive greedy top-down learning algorithm that is the sameas the learning algorithm used for joint density trees, ex
ept:� It is only allowed to test the \parent" or input variables in its bran
h nodes.� Wherever the joint density tree learner would
all a subroutine to learn a leaf,the strati�ed
onditional density tree learner instead
alls a subtree learner.This subtree learner is restri
ted to trees that bran
h only on the output variableXi; the leaves of this tree
ontain
onditional probability densities rather thanjoint probability densities.� Conditional log-likelihoods rather than joint log-likelihoods are used when judg-ing the quality of proposed subtrees.Be
ause entire subtrees are generated by the strati�ed tree learner where the jointdensity tree learner only had to generate leaves, the strati�ed tree learner is signi�-
antly more
omputationally expensive. There may be other less expensive algorithmsfor learning strati�ed trees that are nearly as a

urate; however, the algorithm pre-sented here is designed primarily to provide a rough experimental upper bound forhow a

urate we might expe
t strati�ed density trees to be.An example of a
onditional density tree learned on a syntheti
 two-dimensionaldataset is shown in Figure 4.7. 88

Figure 4.7: An example strati�ed tree learned to model the
onditional distributionof the verti
al-axis variable given the horizontal-axis variable.When the output variable is dis
rete, it makes no real di�eren
e whether theoutput variable is ever tested in a bran
h node. The leaf density estimators we usein this thesis all use multinomial distributions for the dis
rete variables, and ea
hbran
h on a dis
rete variables has one
hild for every possible value of that variable.Repla
ing a leaf with a bran
h on the output variable would therefore merely movethe information previously
ontained in the old leaf's multinomial distribution tothe
onditional probability masses re
orded for the new bran
h's new
hild leaves.In this
ase, the strati�ed
onditional density tree learning algorithm be
omes verysimilar to
lassi
al de
ision tree learning algorithms su
h as ID3 [Qui86℄. ID3 usesthe information gain between ea
h
andidate bran
h test and the
lass variable togreedily learn the tree stru
ture. This information gain is dire
tly proportional to thein
rease in the
onditional log-likelihood of the training data that would be a
hievedby performing the same split. Our algorithm also uses an in
rease in log-likelihood asits
riterion, although it may evaluate this in
rease only on a subset of the trainingdata that was not used to �t the leaves' parameters.
89

4.5.2 Using joint density trees
onditionallyWhile the strati�ed
onditional density trees dis
ussed in the previous se
tion
anmodel
onditional density trees mu
h more a

urately than CART-like single-level
onditional density trees, they are
omputationally expensive to learn. Furthermore,as we shall see later in the experimental results, their a

ura
y
an still be improvedon signi�
antly.In this se
tion we dis
uss the use of density trees modeling joint distributionsP (~Si) to obtain
onditional density estimates P (Xij ~�i). Assuming we have a densitytree for P (~Si), we
an obtain an estimate for a parti
ular P (xij~�i) as follows:P (xij~�i) = Xl P (lj~�i) � P (xij~�i; l)= Xl P (l) � P (~�ijl)Pl0 P (l0) � P (~�ijl) � P (xij~�i; l)= P (l
) � P (~�ijl
) � P (xij~�i; l
)Pl0 P (l0) � P (~�ijl0)where the summation over l
ollapses to a single leaf l

onsistent with both xi and ~�i,sin
e all other leaves l have either P (~�ijl) or P (xij~�i; l) equal to zero. This equationgives us a simple way of
al
ulating
onditional distributions P (Xij ~�i) from treesmodeling joint distributions P (Xi; ~�i), assuming the distribution P (Xi; ~�ijl) withinea
h leaf l
an be marginalized to
ompute P (~�ijL) and
onditionalized to
omputeP (Xij ~�i; L).Joint density trees are trivially
apable of representing Bayes
lassi�ers when usedin this manner. In parti
ular, sin
e ea
h leaf in the density trees employed in thisthesis models all dis
rete variables independently, a Naive Bayes
lassi�er for dis
retevariables is obtained in the spe
ial
ase where the density tree is a one-level densitystump with a root node bran
hing on the variable to be predi
ted. Su
h NaiveBayes
lassi�ers have previously been used to model the
onditional distributionswithin Bayesian networks [HM97a℄. A
ommonly used Bayes
lassi�er for
ontinuousvariables is to model ea
h
lass distribution with a Gaussian; this
lassi�er is obtainedsimply with a density stump bran
hing on the
lass variable with leaves employingGaussian distributions over the
ontinuous variables, as dis
ussed in se
tion 4.2.2.More generally, suppose a joint density tree over dis
rete variables has a bran
hstru
ture similar to the bran
h stru
ture of a two-way
onditional density tree (asdis
ussed in se
tion 4.5.1): that is, on
e the output variable is tested in a bran
h90

node, no further tests
an be performed on the input variables in subsequent levels ofthe tree. When this joint density tree is used to estimate
onditional distributions forthe output variable, it is similar in form and fun
tion to a hybrid de
ision tree / NaiveBayes
lassi�er also developed in previous resear
h [Koh96℄. In the most general
asewhen the tree has an arbitrary bran
h stru
ture (and the variables are not ne
essarilydis
rete), the algorithm for
omputing
onditional distributions essentially
reates aBayes
lassi�er \on the
y" a
ross di�erent parts of the tree to determine whi
h ofthe leaves
onsistent with ~�i the datapoint probably
ame from.For any given ~�i, most leaves l0 in the tree will impose
onstraints on ~�i that ~�ifails to meet. Thus, most of the terms in the denominator of the last equation aboveare zero, and the
orresponding leaves
an be omitted from the summation. This
an be a

omplished by performing the summation during a depth-�rst traversal ofthe tree in whi
h subtrees that impose
onstraints in
onsistent with ~�i are ignored.However, it may still be the
ase that many leaves in the tree are
onsistent with ~�i.This problem tends to be worst when there are few parent variables, sin
e these treeshave a larger fra
ion of bran
hes on the
hild variable, and the summation algorithmmust re
urse on all of the
hildren of su
h bran
h nodes rather than just the single
hild
onsistent with ~�i.If the
lass of density fun
tions used in the leaves is
losed under addition ands
alar multipli
ation, then we
an take a density tree modeling P (Xi; ~�i) and pre-
ompute a marginalized density tree P (~�i). Su
h a marginalization algorithm fordensity trees with
onstant-density leaves has been used in previous work by Kozlovand Koller on message-passing algorithms for inferen
e in
ontinuous-variable graph-i
al models [KK97℄. On
e this tree is
omputed, we
an
ompute the
onditionaldistribution simply as P (Xij ~�i) = P (Xi; ~�i)P (~�i) ;where
omputing the numerator and evaluating the denominator ea
h require lo
at-ing and evaluating only one leaf distribution in the appropriate tree. Unfortunately,many types of leaf density estimators examined in this thesis are not
losed underaddition, in
luding the fa
torized distributions for multiple dis
rete variables and theexponential, Gaussian, and fa
torized linear distributions for
ontinuous variables.Furthermore, for some operations we might wish to perform with the density trees,su
h as sampling or
ompression, being able to
ompute P (Xij ~�i) as a quotient of twobla
k-box fun
tions is not parti
ularly helpful; su
h operations are mu
h more natu-91

rally
omputed in terms of leaf probabilities P (Lj ~�i) and leaf-dependent
onditionalprobabilities P (XijL; ~�i).4.5.3 Speeding up the
onditional evaluation of joint densitytreesHowever, we
an still speed up the evaluation of
onditional probabilities a bit bygenerating an auxiliary \skeleton" marginalized tree from the original density tree.All bran
hes in this skeleton marginalized tree are on the parent variables ~�i. Thereis one leaf in this tree for every possible distin
t
ombination of leaves in the originaljoint density tree that
an be simultaneously
onsistent with any �xed value ~�i. Ea
hleaf in the skeleton marginalized tree
ontains a ve
tor of pointers to all the originalleaves that are
onsistent with its
onstraints on ~�i. (If the original leaves do not
ontain expli
it re
ords of the
onstraints over Xi imposed on them by bran
h nodesabove them in the tree, these
onstraint sets are re
orded in the marginalized treeleaf's ve
tor along with the
orresponding pointers to the original leaves.) This ve
torof pointers allows us to
ompute the ne
essary
onditional distribution more qui
klyby preventing us from having to traverse the original density tree in order to �ndall the ne
essary leaves. An example of a skeleton marginalized tree is shown inFigure 4.8.The bran
h stru
ture of this skeleton marginalized tree
an be
reated with analgorithm similar to that used previously in the marginalization of density trees with
onstant-density leaves [KK97℄. We �rst de�ne a fra
turing pro
edure that destru
-tively re�nes one tree stru
ture Tt so that no leaf in Tt simultaneously interse
ts morethan one distin
t leaf in some other tree stru
ture Ts, where two nodes are said tointerse
t if there exists some (xi; ~�i) that is
onsistent with the
onstraints asso
iatedwith both nodes. (No two leaves in the same density tree interse
t.) The re
ursiveFRACTURE routine des
ribed in Figure 4.9 takes the root nodes nt and ns of twotrees Tt and Ts and returns the root of the destru
tively re�ned Tt. All \leaves" inTt are simply pla
eholders that
ontain no information other than the
onstraintsimposed on them by their an
estors in the tree; these pla
eholder leaves will be re-pla
ed later. Sin
e Tt is only re�ned | that is, no two of its leaves are ever joined| it is also the
ase that no leaf in the result interse
ts more than one leaf of theoriginal Tt. Thus, FRACTURE(nt, ns) is symmetri
 in that it returns a tree with thesame set of leaves that FRACTURE(ns, nt) would; our parti
ular implementation of92

Z > .5?

Z > .75?

N Y

N Y

X

Z
0 1

1
N

X > .5?

Z > .5?

Y

Z > .5?

YN N

N Y N Y

X > .25? Z > .75?

Z

Y

Figure 4.8: An example of a density tree and its skeleton marginalized density tree.Geometri
al representations of the trees are shown to the left; to the right are theirtree-based representations. The top half of ea
h representation shows the originaldensity tree; the bottom half show the
orresponding marginalized density tree. Theleaves of the marginalized density tree
ontains pointers ba
k up to the leaves in theoriginal density tree.
93

FRACTURE merely happens to destroy one of its two argument trees be
ause thealgorithm is slightly more straightforward to des
ribe and implement that way.With FRACTURE de�ned, we
an now de�ne COLLAPSE, a re
ursive pro
e-dure that takes the root of a density tree T and a variable Xi as arguments, andreturns a new tree stru
ture representing the marginalization of Xi out of T . Asin FRACTURE, the leaves in this new tree are merely pla
eholders to be �lled inlater; COLLAPSE merely generates the new tree's bran
h stru
ture. Pseudo
ode forCOLLAPSE appears in Figure 4.10.On
e the stru
ture of the skeleton marginalized tree has been generated, the leavesare �lled in so that ea
h leaf
ontains an array of pointers to all the leaves in theoriginal tree that are
onsistent with its
onstraints on ~�i. We omit the details; inthe next se
tion we will des
ribe a related algorithm where this array is repla
ed witha subtree with bran
hes on Xi.4.5.4 Approximate
onditional evaluation of joint treesUnfortunately, while the skeleton marginalized trees des
ribed above
an speed upevaluation by providing a
onvenient set of pointers to all the ne
essary leaves, evalu-ating the sumPl0 P (l0)P (~�ijl0) may still involve an expensively large number of terms,parti
ularly when there are few parent variables. We
an speed up the
onditionalevaluation of joint density trees further by introdu
ing an approximation. Within the
ontext of any given leaf ls of the skeleton marginalized tree, we
an approximatethe
onditional distribution P (~�ijl0) over ea
h original density tree leaf l0 as a
on-stant P̂s(~�ijl0) spe
i�
 to ls. We
ompute this
onstant distribution on
e and store itwithin ls; ea
h P̂s(~�ijlt) is the average of P (~�ijlt) over all datapoints
onsistent withls's
onstraints. The
onditional density
an then be be
omputed approximately asP (xij~�i) = P (l
) � P̂s(~�ijl
)Pl0 P (l0) � P̂s(~�ijl0) � P (xij~�i; l
) = �s
P (xij~�i; l
)where �s
 is a
onstant.Now that we no longer have to look at any leaves other than l
 in order to
omputethe
onditional density, we need a faster way of �nding l
 from ls than walking througha linear array trying to �nd the one
onsistent with a given xi. A natural
hoi
e is to
reate a subtree with bran
hes testing Xi. This subtree stru
ture
an be generatedby
reating a pla
eholder leaf with the same
onstraints as ls and then repla
ing it94

FRACTURE(nt, ns):� If ns is not a bran
h node, return nt.� Otherwise, if nt is a bran
h, destru
tively set ea
h
hild n
 of nt toFRACTURE(n
, ns) and return nt.� Otherwise (in the
ase that nt is a leaf and ns is a bran
h),
ount the numberof ns's
hildren that interse
t nt. (This number will be nonzero.){ If there is exa
tly one
hild n
 of ns that interse
ts nt, then returnFRACTURE(nt, n
).{ Otherwise,
reate a new bran
h node nb employing the same bran
h testas ns. Let K denote the number of ns's
hildren.{ For every i between 1 and K:� Create an empty pla
eholder leaf whose
onstraints are the
onstraintsasso
iated with nt plus the additional
onstraint imposed by the ithpossible result of nb's bran
h test. Let this pla
eholder leaf be denotedni.� Destru
tively set nb's ith
hild to FRACTURE(ni, the ith
hild of ns).{ Return nb.Figure 4.9: Pseudo
ode for the FRACTURE pro
edure. The tree with root nt isdestru
tively modi�ed so that none of its leaves interse
t more than one leaf in ns,and this modi�ed tree's root is returned.
95

COLLAPSE(nt, Xi):� If nt is not a bran
h node, return a pla
eholder leaf.� Otherwise:{ Let K denote the number of nt's
hildren.{ For all i from 1 to K:� Let mi be COLLAPSE(nt's ith
hild, Xi).{ If nt bran
hes on a variable other than Xi, return a new bran
h nodeemploying the same bran
h test as nt, but with m1; : : : ; mK as its
hildren.{ Otherwise:� For all i from 2 to K:� Destru
tively set m1 to FRACTURE(m1, mi).� Delete mi.Return m1.Figure 4.10: Pseudo
ode for the COLLAPSE pro
edure. The routine returns a newversion of the tree rooted at nt in whi
h all bran
hes on Xi have been marginalizedaway. The resulting tree has one leaf for every distin
t possible
ombination of leavesin the original tree that
an be
onsistent with a �xed ~�i.

96

with FRACTURE(ls, nt), where nt is the root of the original density tree. Ea
h leafof this subtree is then assigned a pointer to the single leaf in the original density tree
onsistent with its
onstraints. When this operation has been performed for ea
hleaf in the skeleton marginalized tree, the result is very similar in stru
ture to thestrati�ed
onditional tree des
ribed in se
tion 4.5.1. We refer to this new kind of treeas a
onditionalized joint density tree. An example is shown in �gure 4.11. Thesetrees
an be used either as \skeleton marginalized trees" to slightly speed up the
omputation of the exa
t
onditional distribution from the original joint density treeP (xij~�i) = P (l
) � P (~�ijl
) � P (xij~�i; l
)Pl0 P (l0) � P (~�ijl0)by organizing pointers to all the relevant nodes in the original joint density tree, orto
ompute the even faster approximate
onditional distributionP (xij~�i) = �s
P (xij~�i; l
);as time
onstraints require.There are several notable di�eren
es between strati�ed
onditional trees and
ondi-tionalized joint density trees, however. The stru
tures of strati�ed
onditional densitytrees are optimized dire
tly for maximimizing the total
onditional log-likelihood ofthe data rather than the joint. Con
eptually, one would expe
t this to make strati�ed
onditional density trees more a

urate at estimating
onditional densities. However,sear
hing for a good strati�ed
onditional density tree is more
omputationally ex-pensive for the reasons des
ribed in se
tion 4.5.1. Furthermore, the stru
tures of jointdensity trees are more
exible, allowing them to
onform faithfully to the regions inwhi
h there are many training datapoints without breaking other low-density regionsinto too many leaves. For example,
onsider �gure 4.11. In order for a strati�ed
onditional tree to
reate a split on Z > :75 in the (X > :5; Z > :5) region wherethere might be plenty of data, this same split must be applied a
ross all values ofX, in
luding the potentially mu
h lower-density region (X � :5; Z > :5). The jointdensity tree is not as in
exible in this respe
t. While the stru
ture of a
onditional-ized joint tree is similar to that of a strati�ed
onditonal tree, ea
h of its leaves is apointer to a leaf in the joint density tree that may be have trained on a signi�
antlylarger set of data than a
orresponding leaf of a strati�ed
onditional tree would havebeen. For example, the
onditionalized joint tree leaf
orresponding to the region(Z > :75; X < :5) is a pointer to the joint tree leaf whi
h was trained on all datain the larger region (Z > :5; X < :5). This added
exibility may help
onditional97

joint density trees
ompensate for the fa
t that they are optimized to model jointdistributions rather than
onditional ones.Finally, if ea
h leaf of the original joint tree employs a nonuniform distributionover the parent variables, then obtaining the
onditional distribution P (Xij~�i) froma joint tree using the relationshipP (xij~�i) =Xl P (lj~�i) � P (xij~�i; l)
an result in more a

urate density estimation than would be possible by simply usingthe
onditional distribution of a single strati�ed density tree leaf, even if the joint treeis stru
tured like a strati�ed
onditional density tree | that is, with all bran
hing on~�i performed before any bran
hing on Xi. Intuitively, by
ombining the distributionslearned in di�erent leaves using this relationship, we have essentially
reated a \softbran
h" over ~�i that helps us to more a

urately predi
tXi as a fun
tion of ~�i withouta
tually splitting the dataset further into
ompletely disjoint subsets.4.6 Stru
ture-learning algorithm for Bayesian Net-works using
onditional density treesMost previous algorithms for learning Bayesian networks over
ontinuous variableshave taken one of the following approa
hes:1. Employ simple parametri
 distributions su
h as Gaussians that have easily
om-putable suÆ
ient statisti
s; sear
h dire
tly over Bayesian networks employingthese
ontinuous distributions (e.g. [HG95℄). This approa
h has the obviousdrawba
k that the networks learned may be ina

urate when the data does notobey the assumptions behind the model's parametri
 forms.2. Sear
h for a network stru
ture that a

urately models a version of the dataset inwhi
h ea
h variable is independently quantized; then, use this same stru
ture fora Bayesian network modeling the original
ontinuous variables (e.g. [MC98b℄).This approa
h has the disadvantage that the dis
retization pro
ess may
ausesome intervariable dependen
ies in the
ontinuous data to be lost, and mayadd spurious dependen
ies. Furthermore, the stru
ture-learning pro
edure doesnot take into a

ount the representational power of the parti
ular
ontinuous98

X

Z
0 1

1
N

X > .5?

Z > .5?

Y

Z > .5?

YN N

N Y N Y

X > .25? Z > .75?

Y

Z > .5?

Z > .75?

N Y

X > .5?

X > .5?

X > .25? X > .5? X > .5?

N

N N N

NY

Y Y Y

Y

Figure 4.11: An example of a
onditionalized joint density tree. A geometri
al repre-sentation of the tree is shown to the left; to the right is its tree-based representation.The top half of ea
h representation shows the original density tree; the bottom halfshow the auxiliary tree used to evaluate
onditional densities. Ea
h leaf of the auxil-iary tree
ontains a pointer ba
k up a single leaf in the original density tree.
99

distributions that will be used in the �nal network | for example, how manyparent variables
an be used before too many datapoints would be required tolearn the
ontinuous distribution.3. Independently quantize the variables as in approa
h 2, but optimize the quan-tization so that the quantized variables predi
t the hidden
lass variable of amixture model learned on the
ontinuous variables [MC99℄. This approa
h ame-liorates some of the disadvantages of approa
h 2, but at the
omputational
ostof learning a joint mixture model over all the variables.4. Perform a simultaneous sear
h over dis
retization poli
ies and networks thatmodel the
orresponding dis
retized variables ([MC98a℄, [FG96a℄). Be
ause thedis
retization poli
y takes into a

ount the parti
ular variable intera
tions beingmodeled in the network, fewer dependen
ies in the original data are lost andfewer spurious dependen
ies are generated. However, this problem does not
ompletely go away; additionally, as in the previous approa
h, this approa
hdoes not take into a

ount the
omplexity of the parti
ular models one mighthave in mind for the �nal network over the original
ontinuous variables.5. Perform a simple greedy stru
ture sear
h over networks that employ
omplex
ontinuous distributions, as in se
tion 3.3. This approa
h has the disadvan-tage that the greedy sear
h may be inadequate to �nd a good network in somedomains, parti
ularly those in whi
h networks employing in
orre
t variable or-derings require many more ar
s than networks with
orre
t variable orderings.6. Perform an extensive stru
ture sear
h dire
tly over networks that employ
om-plex
ontinuous distributions ([HT95℄, [FN00℄). This method is
omputationallytra
table only in domains with relatively small numbers of variables and/or dat-apoints when ea
h
ontinuous distribution required during the sear
h is time-
onsuming to learn.In this se
tion we use the speed with whi
h
onditional density trees
an be learnedto examine hybrid stru
ture-learning algorithms that attempt to
ombine the bestaspe
ts of some of these approa
hes. We generalize the greedy learning algorithmdes
ribed in se
tion 3.3 in several ways:� The greedy algorithm may be started from an arbitrary network stru
ture B0rather than an empty network stru
ture B�. In parti
ular, it may be useful to100

start it from a network stru
ture that was learned by a more extensive sear
hpro
edure on a dis
retized version of the dataset. If the more extensive sear
h isable to identify roughly the right order for the variables in the network and/orgood parent sets that are diÆ
ult to �nd greedily, then this may be a signif-i
antly better starting point for the greedy algorithm to begin �nding better
ontinuous-distribution networks. Alternatively, it may be started with the re-sult of a previous iteration of the same greedy algorithm. When run in thisfashion, the overall algorithm is similar in spirit to the Sparse Candidate algo-rithm previously developed for dis
rete domains [FNP99℄.� The pairwise s
ore improvements I(Xi; Xj) used in se
tion 3.3 were measuredwith respe
t to B�, and were always s
ores for ar
 additions. The pairwises
ore improvements we use now are with respe
t to B0. These pairwise s
oreimprovements will generally not be near-symmetri
 as they were before. Someof these improvements will be for ar
 deletions rather than additions, and somear
 additions may be invalid be
ause they would
reate
y
les in the graph.The pairwise improvements are stored in a list sorted in order of de
reasingestimated s
ore improvement; the algorithm runs down this list and attemptsthe
orresponding network stru
ture
hanges in order.� The
onditional distributions used during the greedy algorithm's sear
h overnetwork stru
tures may not be of the same form as the distributions used inthe �nal network. For example, the greedy sear
h
ould be performed on a
ompletely dis
retized dataset, or with density trees that use
onstant-densityleaves; after the sear
h over stru
tures has been
ompleted, the resulting networkstu
ture
an be used in
onjun
tion with more
omplex distributions, su
h asdensity trees with leaves employing multilinear interpolation.We will examine the e�e
ts of these generalizations in the experimental resultsse
tion. Pseudo
ode for the greedy algorithm we employ throughout this
hapter isshown in Figure 4.12.At the beginning of the greedy algorithm, one fun
tion Sf(Xi; ~�i) is used to
omeup with a (possibly
rude) ranking of all possible single-ar

hanges to B0. These
hanges are then attempted in order from most to least promising a

ording to thisranking, subje
t to the
onstraints that no variable
an have more than MAXPAR-ENTS parents and no more than MAXCHANGES
hanges to any given variable's101

� Given:{ B0, an initial network stru
ture.{ Ss(Xi; ~�i), a fun
tion returning the estimated
ontribution to network quality thatwould be a
hieved by using ~�i as Xi's parents in a network. This fun
tion will generallylearn a
onditional distribution P (Xij ~�i) and estimate its predi
tive power, usually byevaluating the
onditional log-likelihood of a holdout set.{ Sf (Xi; ~�i), another fun
tion similar to Ss(Xi; ~�i) but that may potentially learn andevaluate simpler distributions than Ss and thus require less
omputational time. (Ss is\slow"; Sf is \fast".){ MAXCHANGES, a maximum number of
hanges to attempt on any single variable'sparent set.{ MAXPARS, a maximum number of parents any variable may have.� Let L be a list in whi
h ea
h element lu
ontains a
hild variable Xu
 , a parent variable Xup ,and a s
ore su. Initialize L to the empty list.� For ea
h pair of variables X
 and Xp 6= X
:{ Let ~�
(B0) denote the set of X
's parents in B0.{ If Xp 2 ~�
(B0), let ~�
0 = ~�
(B0)� fXpg; otherwise let ~�
0 = ~�
(B0) [fXpg.{ If
hanging X
's parent set in B0 to ~�
0 would not result in a
y
le, add an entry lu toL with Xu
 = X
, Xup = Xp, and su = Sf (X
; ~�
0)� Sf (X
; ~�
).� Sort L a

ording to the s
ores su in des
ending order.� Let B = B0. For ea
h variable Xi,
ompute Ss(Xi; ~�i(B)), where ~�i(B) denotes the set ofXi's parents in the network stru
ture B, and set CHANGETRIES(Xi) to zero.� For u from 1 to jLj, the length of L:{ Let X
 and Xp denote the
hild and parent variables re
orded in lu. IfCHANGETRIES(X
) > MAXCHANGES, skip to the next value of u. Otherwise:{ Let ~�
0 = ~�
(B) [fXpg if B
ontains no ar
 from Xp to X
, or ~�
(B) � fXpg if Balready
ontains su
h an ar
. If using ~�
0 as Xp's parent set in B would
reate a
y
le,or ~�
 has more than MAXPARS variables, skip to the next value of u. Otherwise:{ In
rement CHANGETRIES(X
) by one. Evaluate Ss(X
; ~�
0); if it is greater thanSs(X
; ~�
(B)),
hange X
's parent set in B to ~�
0 (and store S(X
; ~�
0) for futurereferen
e).� Return B.Figure 4.12: The general form of the greedy stru
ture-learning algorithm employedin this se
tion. 102

parent set are attempted. A se
ond fun
tion Ss(Xi; ~�i) is used to estimate the qual-ity of these attempted ar

hanges; this fun
tion may be more a

urate and more
omputationally expensive than Sf . As in the similar algorithm used in Se
tion 3.3,the s
ales of the quality estimates returned by Ss and Sf may be totally di�erent; theonly thing that matters is that the rankings of di�erent parent sets as evaluated bySs should be highly
orrelated with the rankings of parent sets as evaluated by Sf .The restri
tion on the number of parents per variable is used largely for
omputa-tional reasons. In parti
ular, the amount of time required to learn density tree leavesthat use multilinear interpolation grows exponentially with the number of variables,and (as our experiments will show) these are often the most a

urate trees to use.Likewise, the rationale for
ontinuing to use the rankings provided by Sf even afterthe variables' parent sets have been
hanged from what they were in B0 is also oneof
omputational eÆ
ien
y: it may be too
omputationally expensive to reevaluatean average of O(N) possible further parent-set
hanges every time an ar
 is addedto or removed from the network. Rather than perform these reevaluations imme-diately, the algorithm optimisti
ally assumes that the parent-set
hanges that weremost promising in B0 are still promising even after some
hanges have been made tothe network.This is the same heuristi
 motivating the Sparse Candidate algorithm [FNP99℄.However, the Sparse Candidate algorithm uses this heuristi
 to pre
ompute suÆ
ientstatisti
s for promising parent sets and then restri
ts the network stru
ture sear
hto these parent sets. On
e these suÆ
ient statisti
s are
omputed, it is possible toqui
kly perform (for example) an exa
t steepest-as
ent hill
limbing sear
h amongall network stru
tures employing those promising parent sets. In this thesis, ournetworks usually employ nonparametri

ontinuous-distribution density estimatorsrather than dis
rete
ontingen
y tables. (While ea
h individual density tree leafemploys a parametri
 distribution, the number of the leaves
an theoreti
ally growunboundedly with the size of the dataset.) There are therefore no simple suÆ
ientstatisti
s that
an be
omputed; performing exa
t steepest-as
ent hill
limbing in thissetting would be just as expensive with a �xed parent set as it is with a more
exibleone. The greedy algorithm presented here
an be seen as an approximation of steepest-as
ent hill
limbing in whi
h approximate and sometimes \out-of-date" estimates areused for whi
h dire
tions in the network-stru
ture sear
h spa
e are steepest.
103

When the initial network stru
ture B0 has no ar
s, MAXPARENTS is set to 1,and Ss is
onsistent with Sf , then the greedy algorithm degenerates to a maximumspanning forest algorithm and generates the optimal network stru
ture in whi
h ea
hvariable has at most one parent. The greedy algorithm previously des
ribed in se
-tion 3.3 also has this property; the di�eren
e between the two algorithms in this
aseis that the previously des
ribed algorithm is
losely related to Prim's algorithm for�nding minimum spanning trees, while the algorithm in Figure 4.12 is more
loselyrelated to Kruskal's algorithm instead (see, e.g. [CLR90℄).As des
ribed in Figure 4.12, the greedy algorithm may try evaluating parent setswith Ss even when the
orresponding estimated quality improvements from Sf arenegative. If Ss and Sf are identi
al or extremely similar, it may be more pra
ti
al tosimply skip su
h
ases, sin
e Sf is also likely to indi
ate that these parent sets arepoor. In our experiments in this
hapter, however, the algorithm tries su
h
andidateparent sets anyways.In these experimental results (Se
tion 4.8.5), we will examine the speed and e�e
-tiveness of several di�erent methods for ranking single-ar

hanges (Sf), estimatingnetwork quality during the a
tual greedy sear
h (Ss), and
omputing �nal
onditionaldistributions for the network stru
tures learned. As we will see, the ability to use dif-ferent methods for these di�erent tasks
an allow the greedy algorithm to �nd a

uratenetworks qui
kly, parti
ularly when the greedy algorithm is applied iteratively in afashion similar to the Sparse Candidate Algorithm.4.7 Marginal distribution
atteningIn real-world datasets, the marginal distributions of some
ontinuous variables
an bequite
omplex and exhibit sharp features. Modeling the marginal distribution of ea
hof these variables individually is relatively easy if one has enough data. Unfortunately,when several variables are modeled jointly in the same density tree, it be
omes diÆ
ultto model all variables' marginal distributions a

urately at the same time, sin
e ea
hbran
h on one variable redu
es the amount of data from whi
h the distributions ofall the other variables are learned in ea
h of the bran
h's subtrees. In this se
tionwe des
ribe a simple data prepro
essing tri
k that
an sometimes help alleviate thisproblem.Suppose we wish to model a probability density P (Xk) over a one-dimensional104

ontinuous variable Xk. Suppose we also have a stri
tly monotoni
 fun
tion Yk(Xk).Rather than learn a model ofXk's distribution dire
tly, we
an learn a model of P (Yk).Then, by the fundamental transformation law of probabilities, we
an
omputeP (Xk) = P (Yk) ����� dYkdXk ����� :If we have a ve
tor of
ontinuous variables ~S we wish to model jointly, and a ve
torof transformation fun
tions ~Y (~S) with one element for every Xk 2 ~S , this generalizesto P (~S) = P (~Y (~S)) Yk:Xk2~S ����� dYkdXk ����� :If we
an learn a ve
tor of transformation fun
tions ~Y (~S) su
h that modelingP (~Y) is easier than modeling P (~S) dire
tly, and all the individual derivatives dYkdXk areeasy to evaluate, then this relationship will allow us to model P (~S) more a

urately.Most of the types of
ontinuous distributions we use in tree leaves as dis
ussedabove (namely
onstant densities, exponential densities, and linearly interpolateddensities, but not Gaussian densities)
an be used to trivially model
onstant densities.If we
an �nd a transformation Yk(Xk) that \
attens" the marginal distribution ofea
h variable | that is, makes it nearly
onstant | then we might expe
t this tomake modeling joint distributions between the transformed variables easier, sin
e thejoint density approximator
an then spend less of its representational power learningthe variables' marginal distributions and more on the interesting relationships betweenvariables.Fortunately, su
h a transformation is easy to �nd. Namely, we need only learn amodel marginal distribution Pmarg(Xk) for ea
h variable Xk, and then let Yk(Xk) beits
umulative distribution Yk(xk) = Z xk�1 Pmarg(x0k)dx0k:This
hoi
e of Yk(Xk) makes the marginal distribution of Yk
onstant to the extentthat Pmarg(Xk) a

urately models the data. Furthermore, dYkdXk is simply Pmarg(Xk).Note that if all we
ared about were the marginal
umulative distributions, we
ould simply learn them dire
tly rather than learning the marginal densities and thenintegrating. For example, one trivial learning algorithm for the
umulative distribu-tion Yk(xk) would be the fra
tion of the observed datapoints with Xk < xk, or the105

empiri
al
umulative distribution fun
tion. In addition to being unbiased, the em-piri
al
umulative distribution fun
tion also has the minimum possible varian
e (see,e.g., [S
o92℄). However, this estimator would be useless for our purposes: in the endwe want a valid probability distribution over ~X, and this requires sensible estimatesfor the marginal probability densities dYkdXk . This unbiased
hoi
e for estimating Yk(xk)would give us an unbiased but extremely high-varian
e marginal probability densityestimator that would be zero everywhere ex
ept where the a
tual datapoints lie, atwhi
h points the estimated density would be in�nite. Unfortunately, unlike
umula-tive distributions, there is no single unbiased estimator for density fun
tions that hasthe minimum possible varian
e regardless of the distribution being learned [Ros56℄.For our marginal density estimates, we use a tree-based density estimator su
has des
ribed in previous se
tions to learn ea
h marginal distribution Pmarg(Xk). As-suming the type of distribution used in ea
h leaf
an be analyti
ally integrated, it issimple to transform ea
h one-dimensional density tree Pmarg(Xk) into an identi
allystru
tured tree representing the
orresponding
umulative distribution Yk(Xk). Todo so, we simply perform a depth-�rst traversal of the original density tree, makingsure bran
hes
orresponding to smaller values of Xk are traversed �rst. Ea
h leaf lof the original density tree representing the fun
tion P lmarg(Xk) over the leaf's range[al; bl℄ be
omes a new leaf representing the fun
tionY lk(xk) = C + Z xkal P lmarg(x0k)dx0kwhere C is the sum of the integrated probabilities of all leaves already traversed.If the density tree used to represent Pmarg(Xk) also has a uniform global \sla
k"distribution added as des
ribed in se
tion 4.4.4, a
orresponding global linear term isadded to the density tree representing Yk(Xk).Figure 4.13 shows a rather pathologi
al two-dimensional distribution exhibited bytwo variables in the Bio dataset, along with the two-dimensional distribution resultingwhen these variables are transformed so they have approximately uniform marginaldistributions. The original data exhibits strong periodi
 spikes in the marginal dis-tribution of the variable
orresponding to the plot's Y axis, possibly due to a quani-tization artifa
t of some sort that only a�e
ts part of the data. These spikes havee�e
tively been removed from the marginal distributions of the transformed versionof the data. There are still strong dis
ontinuities in the transformed joint distribu-tion, but these dis
ontinuities exist where the relationship between the two variables
hanges in an interesting fashion. The job of modeling the spikes in the marginal106

Figure 4.13: A two-dimensional distribution from the Bio dataset: original version(left) and transformed version in whi
h both marginal distributions are approximatelyuniform (right).distributions of the variables has largely been taken over by the separate marginalmodels, allowing the learner of the joint model to
on
entrate on this relationship.When using joint density trees
onditionally as des
ribed in se
tion 4.5, we needto
al
ulate P (Xij ~�i). Given the transformation fun
tions for Xi and ~�i, and a jointdensity tree representing P (Yi; ~Y�i) (where ~Y�i is the ve
tor in whi
h ea
h variableXk 2 ~�i is repla
ed with Yk(Xk)), this
an be done as follows:P (Xij ~�i) = P (Xi; ~�i)P (~�i)= P (Yi; ~Y�i) Yk:Xk2fXig[~�i ��� dYkdXk ���P (~Y�i) Yk:Xk2 ~�i ��� dYkdXk ���= P (Yij ~Y�i) � ����� dYidXi �����where P (Yij ~Y�i) is
omputed with the density tree representing P (Yi; ~Y�i) as des
ribedin se
tion 4.5.Note that it is unne
essary to evaluate any of the original density trees Pmarg(Xk) =107

dYkdXk for the parent variables Xk 2 ~�i. In addition to being
omputationally
onve-nient, this means ina

ura
ies in the parent variables' learned marginal distributionsdo not dire
tly a�e
t the �nal estimates of P (Xij ~�i): only those of Pmarg(Xi) do.Ina

ura
ies in the parent variables' learned marginals only harm the a

ura
y of the�nal
onditional distribution by making the transformed data's marginals imperfe
tly
at, whi
h might make learning the joint distribution over the transformed variablesslightly more diÆ
ult to learn than it would be if the marginals were perfe
tly
at.This is in
ontrast with what would happen if we managed to
ompletely bot
h themodeling of Pmarg(Xi), in whi
h
ase the �nal
onditional distribution P (Xij ~�i) wouldprobably be ina

urate no matter how a

urate the joint distribution P (Yij ~Y�i) weresubsequently modeled.Now suppose we are sear
hing for a good Bayesian network stru
ture with whi
hto model the data, where ea
h
onditional distribution in the network will be modeledusing a
onditional density tree over data transformed in the manner des
ribed above.The probability density the network models over the original N variables will beP (~X) = NYi=1P (Yi(Xi)j ~Y�i(~�i)) � Pmarg(Xi):Thus, ea
h datapoint's
ontribution to the log-likelihood of a given network will beNXi=1 logP (Yi(Xi)j ~Y�i(~�i)) + NXi=1 logPmarg(Xi):The latter term in this sum is independent of �i, i.e. of the network stru
ture.This means that when sear
hing for the best network stru
ture with whi
h to modelthe original data, we
an simply:� Learn one marginal distribution Pmarg(Xi) for ea
h
ontinuous variable Xi;� generate the
orresponding
umulative distributions Yi(Xi) and use them totransform all the data in one pass; then� learn a network modeling the transformed data, without referring ba
k to thetransformations (or the learned marginal distributions that generated them).When using learning joint density trees and then using them
onditionally, themarginal-
attening method des
ribed here helps prevent the joint density tree learnerfrom needlessly spending its representational power modeling
hanges in ea
h parent108

variables' marginal distribution that would then have no e�e
t on the estimated
ondi-tional distributions. Note, however, that the joint density tree learner may still wastesome of its representational power modeling relationships between two or more of theparent variables even when these relationships have no bearing on the desired
ondi-tional distribution. One possible interesting avenue for future resear
h along similarlines would be to learn transformation fun
tions that approximately
atten the jointdistributions of the parent variables (rather than just their marginals). These trans-formed parent variables
ould then be used in pla
e of the originals when learning ajoint density between another variable and the parent variables.For example, in order to
atten a joint distribution between two variables, we
ould �rst
atten ea
h of their marginal distributions using the te
hnique des
ribedabove. Then, we
ould learn a two-dimensional density tree over both (transformed,marginally
attened) variables in whi
h all the tree's leaves represent
onstant den-sities. We
ould then use this density tree to generate an additional transformationfun
tion in whi
h di�erent subranges of one variable result in di�erent transformationsapplied to the other variable. The
umulative distributions required for these trans-formations
an be obtained relatively simply from a strati�ed re
onstru
tion of thetwo-dimensional density tree generated using the algorithm des
ribed in se
tion 4.5.4.This line of reasoning brings up the possibility of using a
attening network in
onjun
tion with the primary Bayesian network. The
attening network would be adire
ted a
y
li
 graph with a variable ordering
onsistent with that of the primaryBayesian network. For any variable Xi in the Bayesian network, the job of all thenodes pre
edingX 0is node in the
attening network would be to approximately removeas many dependen
ies as possible from the variables they model by transforming thevariables appropriately. Ea
h density tree used in the primary Bayesian network
ouldthen be learned from data in whi
h all dependen
ies between the parent variables havebeen approximately removed. The learner of these density trees would then be freeto spend more of its representational power on interesting relationships between the
hild variable and the parent variables.In this thesis, however, we will only implement and test transformations in whi
hea
h variable's marginal distribution is
attened independently of all the others. (This
orresponds to using a \
attening network"
ontaining no ar
s.) The investigation ofmore
ompli
ated transformation fun
tions is left for future resear
h.
109

4.8 Experimental resultsIn this se
tion we perform an extensive set of experiments on a variety of tree-based density estimators. After des
ribing the datasets and default parameters usedthroughout the tests (Se
tion 4.8.1), the following
omparisons are made:� In Se
tion 4.8.2 we
ompare the performan
e of strati�ed
onditional densitytrees (see Se
tion 4.5.1) versus CART-like trees that are only allowed to bran
hon input variables.� In Se
tion 4.8.3 we
ompare the performan
e of strati�ed
onditional den-sity trees versus joint density trees that are evaluated
onditionally (see Se
-tion 4.5.2).� In Se
tion 4.8.4 we examine the e�e
ts of the approximate
onditionalizing ofjoint trees (see Se
tion 4.5.4).� In Se
tion 4.8.5 we evaluate several di�erent variations of the greedy Bayesiannetwork stru
ture-learning algorithm dis
ussed in Se
tion 4.6.� In Se
tion 4.8.6 we evaluate the marginal distribution
attening algorithm dis-
ussed in Se
tion 4.7.� Finally, in Se
tion 4.8.7 we
ompare our density-tree-based Bayesian networkmodels with global mixture models.4.8.1 Datasets and default parametersDatasetsThe Bio and Astro datasets previously dis
ussed in Se
tion 3.4.2 had a small amountof uniform noise added to ea
h
ontinuous variable value. In addition to these versionsof the Bio and Astro datasets, we also employ versions in whi
h the added noise isGaussian instead. For the Bio dataset, we perform tests with two di�erent versionswith Gaussian noise: one in whi
h the added noise has a standard deviation of .001,and another in whi
h the noise has a standard deviation of .02. Comparing the resultson all three di�erent Bio dataset versions will help us partially dis
ern how the rela-tive a

ura
ies of the various algorithms being evaluated depend on the �ne-grained110

features of the distributions being modeled. Sin
e the Astro dataset is signi�
antlylarger and therefore more time-
onsuming to deal with, most of our experiments willonly be performed on the previously used version in whi
h the added noise is of uni-form density; however, we will sometimes perform experiments on another version inwhi
h the added noise is Gaussian with a standard deviation of .001, as the situationwarrants.We also use four syntheti
 datasets, ea
h
ontaining two
ontinuous variables and80,000 datapoints. The \Conne
ted" and \Separate" datasets were both generated bysampling from a mixture of Gaussians; the primary di�eren
e between the two is thatthe Gaussians in the Separate dataset overlap less than in the Conne
ted dataset. The\Voronoi" dataset was generated by sampling datapoints near a set of line segmentsthat form a mesh over the spa
e similar to the boundaries in a Voronoi tesselation ofthe spa
e. The \Squiggles" dataset was generated by sampling datapoints near a setof sinusoidal one-dimensional strings.2Default parametersThe following defaults for the density-tree learning algorithms will be used in ourexperiments ex
ept where we spe
ify otherwise:� The greedy bran
hing variable sele
tion strategy des
ribed in Se
tion 4.4.1 isused.� A bran
h on a
ontinuous variable is always performed on the midpoint of the
urrent bounding box (see Se
tion 4.4.2).� Post-pruning is used rather than stopping (see Se
tion 4.4.3). 25% of the train-ing data is held out for pruning. At least 10 datapoints must satisfy a givenleaf's
onstraint set for a bran
h to be
onsidered.� 25% of the remaining training data is held out for evaluating di�erent
hoi
esof bran
hing variables.� All Gaussian and linear-regression leaves are renormalized as des
ribed in se
-tion 4.2.2.2Thanks to Andrew Moore for generating these datasets.111

� The EM algorithm employed for �tting linearly (Se
tion 4.2.4) and multilinearly(Se
tion 4.2.5) interpolated leaves is initialized at the uniform distribution andis run for 10 iterations. A maximum of 25 � 2d randomly sele
ted datapointsare used to �t any single d-dimensional multilinear interpolation; a maximumof 25 � 2 � d datapoints are used to �t any single linear interpolation in whi
hea
h variable is modeled independently. (Informal experiments not des
ribedfurther in this thesis indi
ated that running EM for 20 iterations and using alldatapoints rather than a sample of this size did not result in signi�
antly morea

urate trees, and in
urred
onsiderable additional
omputational expense. Wehave not yet attempted experiments in whi
h the number of iterations or samplesizes are smaller; it is possible these algorithms
ould be sped up even furtherwithout signi�
ant loss of a

ura
y.� The global uniform \sla
k" distribution (see Se
tion 4.4.4) is assigned a prob-ability mass of 10 datapoints' worth, i.e. � = 1010+R , where R is the numberof datapoints in the training set. Half a datapoint's worth of mass was usedfor per-bran
h smoothing of P (L) and Pl(~Sijl). These values were
hosen with-out
areful study; informal experimentation has suggested that their values arelargely irrelevant as long as they're within roughly the same order of magnitude.(Assuming pruning of some sort is employed, as it is in our experiments | otherinformal experiments in whi
h �xed-depth trees were learned exhibited mu
hgreater sensitivity to the exa
t amount of smoothing employed.)� Marginal distribution
attening (se
t 4.7) is not performed.4.8.2 Conditional density trees: one-level (CART-style) vs.strati�edIn this se
tion, we
ompare the performan
e of two CART-like tree-based estimatorswith the performan
e of three di�erent strati�ed tree-based estimators as des
ribedin Se
tion 4.5.1. For a
ontinuous
hild variable, the leaves of the single-level trees
ontain either (1) a Gaussian distribution over the
hild variable independent of theparent variables' values, or (2) a Gaussian distribution over the
hild variable whosemean is a linear fun
tion of the parent variables, as determined by linear regression.(See Se
tion 4.2.2.) The leaves of the strati�ed trees
an
ontain either of the types ofGaussian distributions used in the single-level trees, or uniform distributions over the112

ranges of the
hild variable's values that are
onsistent with the leaves'
onstraints.For the two-dimensional syntheti
 datasets, the task is to learn the
onditionaldistribution P (X2jX1). For the \real" datasets (Bio and Astro), the task is to learna joint distribution over all variables by learning all the
onditional distributionsrequired by a Bayesian network with a �xed stru
ture. (Experiments in whi
h thestru
ture is learned will be performed later in Se
tion 4.8.5.) These stru
tures weretaken from previous stru
ture-learning experiments performed for Se
tion 3.3. TheBio dataset's network has 50 ar
s between the 31 variables, with the number ofparents for any parti
ular variable varying from zero to four. The Astro dataset'snetwork has 107 ar
s between the 68 variables, with the number of parents for anyparti
ular variable varying from zero to three. For the Bio dataset, we performmultiple experiments in whi
h di�erent types and magnitudes of noise are added tothe data: uniform noise with a width of .001, Gaussian noise with a standard deviationof .001, and Gaussian noise with a standard deviation of .02.Figures 4.14 and 4.15 summarize the results. For ea
h dataset/model
ombination,the mean log-likelihood of the test set in a ten-fold
ross-validation is reported, aswell as the empiri
ally estimated 95%
on�den
e interval of this mean. The algorithmwith the highest mean for a given dataset is shown in bold itali
s, as are all otheralgorithms whose means are not lower than it with a statisti
al signi�
an
e of atleast 95% (a

ording to a Student's t-test). The mean time required to learn ea
hmodel on ea
h dataset is also shown. (The time listed is the mean for one of the
ross-validation folds, not for all ten. We omit
on�den
e intervals on these means sin
e anyspeedup fa
tor of, say, two or more was de�nitely
onsistent, and any speedup fa
torof mu
h less than that is of dubious pra
ti
al signi�
an
e and is undoubtedly veryimplementation-dependent.) The ma
hines used for the experiments were otherwiseunloaded Pentium-
lass ma
hines with
lo
k
y
le speeds ranging from 400 to 500MHz. All ne
essary I/O was performed outside of the timing loops, and all testsinvolving any given dataset were always performed on the same ma
hine.On all datasets, it is
lear that the strati�ed trees provide mu
h more a

uratedensity estimation than single-level CART-style trees, regardless of whether ea
hleaf of the single-level trees uses linear regression or a simple Gaussian distributionover the
hild variable. This
omes as no surprise for the synthethi
 datasets wherethe
onditional distributions are obviously multimodal, but the results on the realdatasets are worth noting. For example, the di�eren
e in test-set log-likelihood be-113

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 3000 11000

Connected (synth)

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 2000 12000

Separate (synth)

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 500 3500

Voronoi (synth)

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 600 14000

Squiggles (synth)

Figure 4.14: Experimental
omparison of CART-like vs. strati�ed
onditional densitytrees on syntheti
 datasets
114

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 600

Test-Set Log-Likelihood

 50000 80000

Bio + .001 Unif. noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 600

Test-Set Log-Likelihood

 25000 75000

Bio + .001 Gaussian noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 600

Test-Set Log-Likelihood

 26000 46000

Bio + .02 Gaussian noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Uniform Leaves

Learning time (Mins)

 0 130

Test-Set Log-Likelihood

 2.1e+06 3.4e+06

Astro + .001 Uniform noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Uniform Leaves

Learning time (Mins)

 0 140

Test-Set Log-Likelihood

 2e+06 3e+06

Astro + .001 Gaussian Noise

Figure 4.15: Experimental
omparison of CART-like vs. strati�ed
onditional densitytrees on s
ienti�
 datasets 115

tween \Single-level Linear Regression" and \Strati�ed Linear Regression" on the \Bio.001 Gaussian" dataset is approximately 18300. In other words, a

ording to the test-set data, the strati�ed model appears more likely than the one-level model by a fa
torof approximately e18300 in the absen
e of any prior information. More realisti
ally,sin
e there are approximately 1267 items in ea
h test set, this means that ea
h individ-ual datapoint in the test set was more likely to have been generated by the strati�edmodel than the one-level model by a fa
tor of approximately e14:4 � 2; 000; 000. If wefurther divide by the number of variables (31), we see that, on average, ea
h variablevalue was more likely under the strati�ed model than the one-level model by a fa
-tor of e:47 � 1:6. Similarly, the di�eren
e in the log-likelihoods of \Strati�ed Indep.Gaussian" vs. \Single-level Linear Regression" on the \Astro .001 Uniform" datasetworks out to an average fa
tor of e35:7 � 3 � 1015 per datapoint, or e:525 � 1:7 pervariable value.Using linear regression within the tree leaves appears to perform no better thansimple Gaussian distributions on the syntheti
 datasets, ex
ept perhaps on the Squig-gles dataset when they were used with strati�ed density trees. It does appear to helpsigni�
antly on the various versions of the Bio dataset. At �rst, linear-regressionleaves did not work at all on the Astro dataset: sometimes the predi
ted
onditionalmean for a datapoint in the test set was so far away from the
orre
t leaf's bound-ing box that the estimated integral of the
onditional Gaussian within that leaf was0,
ausing the renormalization to fail. In order to address this problem, we modi-�ed our
ode so that it swit
hes the
onditional distribution of the leaf to a uniformdistribution in su
h pathologi
al
ases. This allowed us to a
quire a result showingthat linear-regression leaves
an provide better log-likelihoods than simple Gaussian-distribution leaves on the Astro dataset, at least in the
ase of single-level CART-styletrees. However, the
orresponding experiment for strati�ed trees was aborted after itwas determined that it would take several CPU-days to
omplete.Strati�ed trees with uniform-distribution leaves were signi�
antly more a

u-rate than those with Gaussian or linear-regression leaves on most of the syntheti
datasets; learning them was slightly faster than learning trees with Gaussian leaves,and mu
h faster (by a fa
tor of 4 or so) than learning trees with linear-regressionleaves. However, uniform-distribution leaves performed signi�
antly worse on theSquiggles dataset and in some instan
es of the Bio dataset.The fa
t that Gaussian leaves
an be less a

urate than simple uniform-density116

leaves in strati�ed trees may be partially due to the fa
t that the
onditional densityestimated for any
ombination of parent values will have a \bump" for every leaf inthe tree, as dis
ussed in Se
tion 4.2.2. This problem might be �xed by using a more
ompli
ated optimization routine that �ts the Gaussian while taking trun
ation andrenormalization into a

ount, as hinted in Se
tion 4.2.2. Unfortunately, this wouldprobably slow the learning pro
ess down
onsiderably, and it is not
lear whether it
ould feasibly be generalized to handle the
ase of linear-regression leaves.Strati�ed density trees
an require almost an order of magnitude more
omputa-tional time to learn due to the more
ompli
ated nature of the tree stru
ture sear
hspa
e. It may be possible to develop e�e
tive strati�ed density tree algorithms thatdo not take as mu
h time to learn. However, as we will see in the next se
tion, itis already mu
h faster to learn joint density trees and then use them
onditionally(as des
ribed in Se
tion 4.5.2); surprisingly, this
an result in more a

urate densityestimation as well.4.8.3 Conditional density estimation: strati�ed trees vs. jointtreesIn this se
tion we
ompare the performan
e of the strati�ed
onditional density treesdes
ribed in Se
tion 4.5.1 with the performan
e of joint density trees used
ondi-tionally as des
ribed in Se
tion 4.5.2. As noted in Se
tion 4.5.4, there are severaldi�eren
es in how these two di�erent kinds of density trees are learned that would
ause us to expe
t their a

ura
ies to be di�erent:� The stru
ture of strati�ed trees is optimized for the spe
i�

onditional distri-bution for whi
h the tree will be used, while the stru
ture of joint trees is not.We might expe
t this to
ause strati�ed trees to be more a

urate than jointtrees.� The stru
ture of strati�ed trees is less
exible than the stru
ture of joint trees,as dis
ussed previously in se
tion 4.5.4. We might expe
t this to
ause strati�edtrees to be less a

urate than joint trees.� Joint trees employing leaves with nonuniform distributions over the parent vari-ables are in a sense using \soft bran
hes" that help them to predi
t Xi as afun
tion of ~�i more
exibly without a
tually splitting the data into
ompletely117

disjoint subsets a

ording to ~�i. We might expe
t this to
ause strati�ed treesto be less a

urate than joint trees.We attempt to gauge the impa
t of ea
h these di�eren
es separately by testingeight di�erent
onditional density-tree algorithms:� Strati�ed density trees employing uniform-distribution leaves. This algorithmis listed as \Strati�ed Cond Uniform" in Figures 4.16 and 4.17, and is the sameas the \Strati�ed, Uniform" algorithm employed in Figures 4.14 and 4.15.� Joint density trees employing uniform-distribution leaves. These joint trees arethen used
onditionally as des
ribed at the beginning of Se
tion 4.5.2. Thisalgorithm is listed as \Joint Uniform" in Figures 4.16 and 4.17.� Strati�ed density trees in whi
h ea
h leaf has a linearly interpolated distributionover Xi that is independent of ~�i. This algorithm is listed as \Strati�ed CondLinear" in Figures 4.16 and 4.17.� Joint density trees in whi
h ea
h leaf models ea
h variable independently witha linearly interpolated density as des
ribed in Se
tion 4.2.4. This algorithm islisted as \Joint Indep. Linear".� Joint density trees in whi
h ea
h leaf models the
ontinuous variables jointlyusing multilinear interpolation as des
ribed in Se
tion 4.2.5. This algorithm islisted as \Joint Multilinear".� Strati�ed density trees in whi
h ea
h leaf models the
ontinuous variables jointlyusing multilinear interpolation. The distribution within ea
h leaf is learned us-ing the same algorithm as would be used in the analogous joint density tree.However, ea
h leaf l's joint distribution P (Xi; ~�ijl) is then only used to
om-pute the
onditional distributions P (Xij ~�i; l) required for the strati�ed tree's
onditional density estimation algorithm. This algorithm is listed as \Strati�edCond Multilinear".� Density trees that are identi
al to the previously listed \Joint Uniform" treesex
ept they are stru
tured like strati�ed density trees, i.e., with all bran
hes on~�i before any bran
hes on Xi. However, while the tree has this restri
tion, itstru
ture is still being optimized for joint log-likelihood rather than
onditionallog-likelihood. This algorithm is listed as \Strati�ed Joint Uniform".118

� Density trees that are identi
al to the previously listed \Joint Multilinear",ex
ept they are stru
tured like strati�ed density trees. This algorithm is listedas \Strati�ed Joint Multilinear".Figures 4.16 and 4.17 show how these algorithms performed on most of the samelearning tasks used in the previous set of results (Figures 4.14 and 4.15). (Due to theextreme amounts of
omputational time taken on the Astro datasets by the Strati-�ed algorithms, we restri
t ourselves here to one of the Astro dataset versions, andhave not yet tested the \Strati�ed Joint Uniform" or \Strati�ed Cond Multilinear"algorithms.)Several notable patterns
an be seen in this set of results. Overall, however, themost important thing to note is that the joint density trees were always mu
h fasterto learn than strati�ed
onditional density trees, and this additional speed
ame withlittle loss of predi
tive a

ura
y | in fa
t, when the trees' leaves employed nonuniformdistributions, joint density trees were more a

urate than strati�ed density
onditionaltrees.The di�eren
es in the a

ura
y of the various algorithms were relatively small onthe two-dimensional Conne
ted, Separate, and Voronoi datasets | at most �ve or sixtimes the standard deviations of the test-set log-likelihoods' estimated means. (Thelisted un
ertainties are for 95%
on�den
e intervals, or two standard deviations inea
h dire
tion.) However, the di�eren
es be
ome more signi�
ant on the real datasets,where higher-dimensional density trees are being employed and the distributions beingmodeled have sharper features. Whether these di�eren
es are of a
tual pra
ti
alsigni�
an
e depends on the appli
ation. For example, the di�eren
e in the test-setprobabilities of the Joint Uniform vs. Joint Multilinear algorithms on the \Bio .001uniform" dataset works out to a fa
tor of approximately 97 per datapoint, or 1.16per variable value. The di�eren
e in the test-set probabilities of the Joint Multilinearvs. Conditional Uniform algorithms on the \Astro .001 uniform" dataset works outto roughly a fa
tor of 127 per datapoint, or 1.07 per variable value.Comparing the results of the Strati�ed Cond Uniform and Strati�ed Joint Uniformalogrithms shows that when the leaf distributions are uniform, Strati�ed
onditionaldensity trees do in fa
t appear slightly more a

urate than joint density trees thatare restri
ted to the same Strati�ed stru
ture. This is to be expe
ted, sin
e the onlyreal di�eren
e between these two algorithms is that the Strati�ed Cond Uniform tree-learning algorithm is optimizing for the appropriate
onditional distribution, whereas119

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 9900 10400

Connected (synth)

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 11000 11600

Separate (synth)

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 3000 3400

Voronoi (synth)

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 12700 14100

Squiggles (synth)

Figure 4.16: Experimental
omparison of strati�ed
onditional density trees vs. jointdensity trees on syntheti
 datasets 120

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 450

Test-Set Log-Likelihood

 76500 83500

Bio + .001 Unif

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 450

Test-Set Log-Likelihood

 71000 77000

Bio + .001 Gaussian noise

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 400

Test-Set Log-Likelihood

 43800 46000

Bio + .02 Gaussian noise

Algorithm

Stratified Cond Unif.

Stratified Cond Lin.

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Mins)

 0 640

Test-Set Log-Likelihood

 3.28e+06 3.35e+06

Astro + .001 Uniform Noise

Figure 4.17: Experimental
omparison of strati�ed
onditional density trees vs. jointdensity trees on s
ienti�
 datasets 121

the Strati�ed Joint Uniform algorithm is optimizing for the joint.3 However, thesedi�eren
es are small, parti
ularly on the two-dimensional syntheti
 datasets.Comparing the results of the Strati�ed Cond Uniform and Joint Uniform algo-rithms suggests that when the uniform-leaf joint density trees are freed from thestru
tural restri
tions of strati�ed trees, this added
exibility
an o

asionally makeup for the fa
t that they are optimized for the wrong distribution (i.e. joint ratherthan
onditional), as it appears to do in the Squiggles, Gaussian-noise Bio, and Astrodatasets. However, on many of the other datasets it appears to make no signi�
antdi�eren
e.The pi
ture
hanges when nonuniform leaf distributions are employed. The jointdensity trees employing nonuniform leaf distributions (Joint Indep. Linear and JointMultilinear)
onsistently and signi�
antly outperform all strati�ed
onditional densitytrees (Strati�ed Cond Uniform, Strati�ed Cond Linear, and Strati�ed Cond Multilin-ear) both in terms of learning speed and predi
tion a

ura
y. This in
reased predi
-tion a

ura
y o

urs despite the fa
t that they are optimized for joint distributionsrather than the
onditional distributions for whi
h they are subsequently used.Comparing the Strati�ed Cond Multilinear and Strati�ed Joint Multilinear algo-rithms allows us to spe
i�
ally test the \soft bran
hing" hypothesis. Even when jointdensity trees are restri
ted to have the same stru
ture as
onditional density trees,the fa
t that they learn the parent variables' distributions in the leaves allows them topredi
t the output variables more a

urately than the
orresponding strati�ed
ondi-tional density trees in whi
h the parent variables' distributions are not modeled in theleaves. The results on the Squiggles, Bio, and Astro datasets all lend support to thishypothesis. (The results on the other syntheti
 datasets are also positive, but onlyslightly so.) By themselves, these results do not ex
lude the possibility that the dif-feren
es in a

ura
y were due entirely to subtle di�eren
es in tree stru
ture
aused bythe di�erent optimization
riteria (
onditional log-likelihood vs. joint log-likelihood);however, other experimental results in Appendix A.2 show this is not the
ase.In all experiments with joint density trees, trees employing nonuniform leaf distri-butions were signi�
antly more a

urate than those employing uniform leaves. Trees3A
tually, this is not quite true, sin
e the \Uniform" leaves in our trees still have non-
onstantdistributions over any dis
rete variables they model, so some \soft bran
hing" may still o

ur due tothese dis
rete variables. However, there are no dis
rete variables in the syntheti
 datasets, and only afew in the Bio and Astro datasets. Furthermore, further supplemental experiments in Appendix A.2
ontrol for this di�eren
e. 122

Algorithm

Stratified Cond Lin.

Joint, Lin. Int.

Learning time (Mins)

 0 320

Test-Set Log-Likelihood

 3.32e+06 3.39e+06

Astro + .001 Uniform Noise (denser net)

Figure 4.18: Experimental
omparison of strati�ed
onditional density trees vs. jointdensity trees: higher network
onne
tivityusing multilinear interpolation were more a

urate than those employing independentlinear interpolations, and this in
reased a

ura
y is statisti
ally signi�
ant; however,this di�eren
e is not dramati
, and
omes at signi�
ant additional
omputationalexpense.One might worry that the parti
ular network stru
tures used in the above exper-iments happen to be parti
ularly favorable to the density-tree algorithms that learnjoint distributions that are then used
onditionally, as opposed to the strati�ed
ondi-tional density trees. After all, the network stru
tures used here were generated duringprevious experiments with Mix-nets (Chapter 3), whi
h also learned joint distribu-tions that were used
onditionally; furthermore, the network stru
tures used here arerather sparse. As a followup experiment, we used the greedy network-learning algo-rithm des
ribed in Se
tion 4.6 on a version of the Astro dataset dis
retized with 4bu
kets per variable, using strati�ed
onditional density trees to model the dis
retizeddata. No a priori restri
tion on the number of parents per variable was enfor
ed. Thisprodu
ed networks with an average of approximately three parents per variable, orroughly twi
e the number of parents per variable in the network employed in the testsabove. We
ompared the performan
e of \Joint Lin. Int." with \Strati�ed Cond Lin"density trees using these network stru
tures, using a mu
h faster ma
hine than thema
hines employed for the other experiments in this thesis. The results, shown inFigure 4.18, show that \Joint Lin. Int." is still signi�
antly more a

urate.4.8.4 Approximate
onditionalizing of joint trees for fast eval-uationIn this se
tion we evaluate the algorithm proposed in Se
tion 4.5.4 for \
onditional-izing" joint density trees so
onditional probabilities
an be
omputed qui
kly.We
ompare four algorithms. The �rst two are the \Strati�ed Cond Linear" and123

\Joint Lin. Int." algorithms des
ribed in the previous se
tion. The third, \JointLI Conditionalized", is the same as \Joint Lin. Int.", ex
ept the resulting jointdensity tree is supplemented with a
onditionalized joint density tree (as des
ribed inSe
tion 4.5.4) whi
h is used to speed up the exa
t evaluation of
onditional densitiesfrom the joint density tree by providing pointers dire
tly to the relevant nodes in theoriginal tree. The fourth algorithm, \Joint LI Approx. Cond.", is the same as thethird, but the
onditionalized density tree is evaluated approximately asP (xij~�i) = �s
P (xij~�i; l
)where l
 is the joint density tree leaf
onsistent with both xi and ~�i, and the �s
'sare
omputed as des
ribed in Se
tion 4.5.4. Figures 4.19 and 4.20 summarize theresults. As before, the \Learn time" listed is the average training time per
ross-validation fold. The evaluation time listed is the average time per
ross-validationfold required to evaluate the
onditional log-likelihoods of all modeled variables inthe entire dataset (that is, both the training and test sets).The results
learly show that approximately
onditionalized joint density trees
anbe used to
al
ulate
onditional probability mu
h more qui
kly than non
ondition-alized joint density trees. The speedup fa
tor ranges roughly from 7 to 25 in theseparti
ular experiments; it is greatest on the syntheti
 datasets sin
e two-dimensionalproblems tend to be the most expensive
ase for the
onditional evaluation of jointdensity trees (see Se
tion 4.5.2). Some of this speedup | roughly a fa
tor of 2 in all
ases | was due to the qui
ker a

ess to the leaves of the original joint density treeprovided by the
onditionalized tree's stru
ture. The remainder of the speedup wasdue to the approximate evaluation pro
edure in whi
h only the single leaf
onsistentwith both the
hild variable value xi and parent variable values ~�i is evaluated.This approximate evaluation
auses a noti
able amount of a

ura
y to be lost onproblems in whi
h the distributions have sharp features, su
h as the Squiggles andsmall-noise Bio datasets. On many other problems, however, in
luding the Astrodataset, no signi�
ant a

ura
y is lost. Furthermore,
onditionalized joint densitytrees are still signi�
antly more a

urate than strati�ed
onditional density trees, and
an be learned mu
h faster (by a fa
tor of roughly 3 to 6 in our experiments). Thus,
onditionalized joint density trees represent a useful
ompromise between the learningspeed and a

ura
y of joint density trees and the evaluation speed of
onditional densitytrees.One possible way to improve the a

ura
y of
onditionalized joint trees would124

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 40

Eval time (Secs)

 0 10

Test-Set Log-Likelihood

 9900 10400

Connected (synth)

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 40

Eval time (Secs)

 0 10

Test-Set Log-Likelihood

 11190 11600

Separate (synth)

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 35

Eval time (Secs)

 0 15

Test-Set Log-Likelihood

 3000 3420

Voronoi (synth)

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 40

Eval time (Secs)

 0 15

Test-Set Log-Likelihood

 13100 14000

Squiggles (synth)

Figure 4.19: Experimental results for approximate
onditionalizing on syntheti
datasets

125

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 250

Eval time (Secs)

 0 12

Test-Set Log-Likelihood

 78500 82500

Bio + .001 Unif noise

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 250

Eval time (Secs)

 0 12

Test-Set Log-Likelihood

 72000 76000

Bio + .001 Gaussian noise

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 250

Eval time (Secs)

 0 12

Test-Set Log-Likelihood

 44200 45800

Bio + .02 Gaussian noise

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Mins)

 0 250

Eval time (Secs)

 0 825

Test-Set Log-Likelihood

 3.285e+06 3.34e+06

Astro + .001 Unif noise

Figure 4.20: Experimental results for approximate
onditionalizing on s
ienti�
datasets

126

be to re�ne the subtrees over the input variables ~�i further before bran
hing on Xibegins. Multiple re�ned subtrees
orresponding to di�erent values of ~�i would thenhave identi
al subtree stru
tures over Xi, and would point to identi
al sets of leaves inthe original joint tree; the only di�eren
es between them would be in the interpolation
oeÆ
ients �s
 they used to approximate P (l
j ~�i). Determining whether to re�ne agiven subtree over ~�i would be a matter of expli
itly trading o� the additional memoryand evaluation-time
omputational
osts versus the resulting in
reased a

ura
y; wedo not investigate this issue further in this thesis.4.8.5 Network stru
ture-learning algorithmsIn this se
tion we evaluate the speed and a

ura
y of several variations of the greedynetwork-learning algorithm dis
ussed in Se
tion 4.6.Our �rst set of experiments
onsists of several di�erent algorithms applied tothe version of the Bio dataset in whi
h uniform noise of magnitude .001 has beenadded. Throughout all the experiments, we set MAXPARS (the maximum number ofparents any given variable
an have) to 5 and MAXCHANGES (the maximum numberof parent-set
hanges to attempt on any one variable during any single iterationof the greedy algorithm) to 10. MAXPARS was tuned to this value by observingthat density trees with greater numbers of parent variables never provided mu
hadditional predi
tion a

ura
y, and were very
omputationally expensive to learn;this value of MAXCHANGES was simply the �rst we tried. (See Appendix A.2for an experiment in whi
h a value of 1 was also tried for MAXCHANGES.) BothSf (Xi; ~�i) and Ss(Xi; ~�i) estimate the goodness of a given parent set ~�i for a givenvariable Xi by learning a density tree of some sort using 75% of the training dataand then evaluating the
onditional log-likelihood of the remaining 25%; however, thetypes of density trees they employ may be di�erent. In these experiments we do not
onditionalize the joint density trees.Ea
h of the algorithms is run for several iterations. Ea
h iteration of a givenalgorithm uses the network returned by the previous iteration of the same algorithmfor its initial network B0. The �rst iteration of ea
h algorithm is provided the emptynetwork B0 = B�, ex
ept one algorithm that is instead initially provided with the bestnetwork stru
ture found by a sto
hasti
 sear
h algorithm on a dis
retized version ofthe data. 127

After ea
h iteration, we measure the quality of the resulting network stru
turewith respe
t to another density tree learning algorithm, whi
h may be di�erent fromany of the density tree learning algorithms used during the a
tual network stru
ture-learning pro
edure. In most experiments, the density trees used for this measurementwill be joint density trees employing multilinearly interpolated leaves, sin
e these tendto provide better �nal density estimates than those employing other types of leaves.First, we examine the impa
t on speed and a

ura
y of using
ompletely dis-
retized versions of the dataset during di�erent phases of the greedy network-learningalgorithm. We
ompare the following variations:� Versions where a dis
retized version of the dataset is used for both Sf (thelearning algorithm used to evaluate all possible ar

hanges at the beginning ofany given iteration) and Ss (the learning algorithm used to evaluate the qualityof a
andidate parent set throughout the greedy network-learning pro
ess). Wetry two di�erent dis
retizations of the dataset: one in whi
h ea
h variable hasbeen quantized into 4 bins, and another in whi
h ea
h variable has been quan-tized into 8 bins. Ea
h variable is quantized independently of all the others; theboundaries of the bins are sele
ted so that roughly the same number of data-points lie in ea
h bin. Density trees are still used to model the distributionsof these dis
retized variables, but the parti
ular density tree learning algorithmused makes the resulting models very similar to the
ontingen
y tables typi-
ally used in dis
rete-variable Bayesian networks: namely, we employ strati�ed
onditional density trees (Se
tion 4.5.1) that use the \taking turns" algorithmfor sele
ting bran
h variables (Se
tion 4.4.1), with pruning disabled. This e�e
-tively implements a \sparse array" representation of a
ontingen
y table. Theseversions of the algorithm are labeled \Dis
4!ML" and \Dis
8!ML" a

ordingto the number of dis
retization bins used per variable.� Versions where a dis
retized version of the dataset is used for Sf , but Ss usesjoint density trees with uniform-density leaves to model the original
ontin-uous data. These versions of the algorithm are labeled \Const w/Dis
4 Ar
S
ores!ML" and \Const w/Dis
8 Ar
 S
ores!ML" a

ording to the numberof dis
retization bins Sf uses per variable.� A version of the algorithm where joint density trees with
onstant-density leavesare learned on the original
ontinuous data for both Sf and Ss. This version islabeled \Const!ML". 128

Figure 4.21 summarizes the results. The plot has one line for ea
h of the �vealgorithm variations; ea
h point on ea
h line represents one iteration of that algo-rithm. The time asso
iated with the nth point for a given algorithm in
ludes thetime required for iterations 1 through n of the algorithm, plus the time required tolearn joint multilinear density trees for the variable
ombinations o

uring in the net-work stru
ture returned by the nth iteration. The log-likelihood asso
iated with thenth point is the mean test-set log-likelihood of the Bayesian network with the stru
-ture learned by the nth iteration and the
onditional distributions determined by thesubsequently learned joint multilinear density trees. (These means are over 10-fold
ross-validations. The verti
al error bars are the 95% empiri
ally estimated
on�-den
e intervals of these means.) The results of every algorithm's �rst iteration doesappear in the plot; the lines
oming up from the bottom of the plot are
oming from\Iteration 0" of all the algorithms, whi
h
orresponds to using an empty network.Unsurprisingly, the Dis
4!ML and Dis
8!ML algorithms were the fastest periteration. However, the resulting network stru
tures were not parti
ularly usefulfor the �nal parameterizations over the original
ontinuous data. The performan
ewas also quite sensitive to the dis
retization level used | Dis
4 performed mu
hworse than Dis
8. The network stru
tures returned by the Dis
4 algorithm's earlyiterations also
aused the subsequent multilinear density tree learning to take mu
hmore
omputation. (The
urve for Dis
4 doubles ba
k on itself be
ause it was fasterto perform two iterations of the greedy algorithm using the dis
rete data and thenreparameterize the network with multilinear density trees than to only perform oneiteration of the greedy algorithm before reparameterizing.)The algorithms (\Const w/Dis
4 Ar
 S
ores!ML" and \Const w/Dis
8 Ar
S
ores!ML) that used dis
retized data for Sf but uniform-leaf density trees overthe original data for Ss found signi�
antly better networks in almost as little timeas the algorithms whi
h also use dis
retized data for Ss. They were also mu
h lesssensitive to the parti
ular level of dis
retization used.The algorithm (\Const!ML") that employs uniform-leaf density trees for both Sfand Ss takes signi�
antly more time per iteration than any of the others. After a fewiterations, it does �nd networks that are more a

urate, with statisti
al signi�
an
e;however, this requires three or four time-
onsuming iterations, and the di�eren
e ina

ura
y is still relatively small.Next we
ompare the e�e
t of using di�erent kinds of density trees for the reparam-129

70000

75000

80000

85000

90000

95000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Disc4->ML
Disc8->ML

Const w/Disc4 Arc Scores->ML
Const w/Disc8 Arc Scores->ML

Const->ML

Figure 4.21: Bio dataset stru
ture-learning experiments: e�e
ts of using dis
retizeddistributions for quality estimates.

130

70000

75000

80000

85000

90000

95000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Const->ML
Const->IL

Const->Exp
Const->Const

Figure 4.22: Bio dataset stru
ture-learning experiments: e�e
ts of di�erent reparam-eterizations of the same network stru
tures.eterization of the networks after ea
h iteration of the greedy algorithm. The greedyalgorithm used in all the following variations uses density trees with
onstant-densityleaves for both Ss and Sf . (Dis
retized versions of the dataset are never used.) Afterea
h iteration, we test the e�e
tiveness of using four di�erent kinds of density trees toparameterize the resulting network stru
ture. These four density tree algorithms areidenti
al ex
ept for the kinds of leaf distributions they employ:
onstant, exponen-tial, independent linear, or multilinear. (See Se
tion 4.2.) The algorithms are labelled\Const!Const", \Const!Exp", \Const!IL", and \Const!ML", a

ordingly. Fig-ure 4.22 shows the results.Despite the fa
t that the greedy stru
ture-learning algorithm is optimizing thestru
ture while using density trees with
onstant-density leaves, all the other den-sity tree types work better than
onstant-leaf density trees on the resulting network131

stru
tures. The di�eren
es in the a

ura
ies of the four tree types is quite
onsis-tent throughout multiple iterations of the stru
ture-learning algorithm. Multilinearinterpolation produ
ed the most a

urate density estimation, followed by indepen-dent linear interpolation, exponential distributions, and
onstant distributions, inthat order. Further note that the �nal a

ura
y of the \Const!Const" algorithm issigni�
antly worse than a

ura
ies of any of the previously evaluated learning algo-rithms that employ multilinear density trees for their �nal distributions, ex
ept forthe \Dis
4" algorithm.Finally, we
ompare the previous \Const!ML" network learning algorithm withtwo others. The �rst learner, \ML!ML", uses density trees with multilinearly inter-polated leaves throughout the entire learning pro
ess | that is, for Sf , Ss, and the�nal networks. The se
ond learner is identi
al to the \Const!ML" algorithm, ex
eptit is initialized with a non-empty network stru
ture. This stru
ture was learned usinga sto
hasti
 sear
h pro
edure on a dis
retized version of the dataset (with 8 dis
retiza-tion bins per variable). AD-Trees ([ML98℄; see this referen
e for the des
ription ofthe sto
hasti
 searh algorithm as well) were used to speed up the sear
h. The bestnetwork found during 100,000 iterations of the sear
h was used for this se
ond varia-tion of the greedy algorithm, whi
h we label \Dis
 Sear
h!Const!ML". The resultsare shown in Figure 4.23.Only two iterations of the \ML!ML"
ould be run due to the large amount of timerequired per iteration. Furthermore, the result at the end of ea
h these two iterationswas no better than the result of the
orresponding iteration of \Const!ML", whi
hran many times faster. This suggests that using density trees with
onstant-densityleaves is a more e�e
tive strategy during the network stru
ture sear
h, despite thefa
t that multilinear density trees are mu
h better
andidates for the �nal networkparameterizations.The results of \Dis
 Sear
h!Const!ML" were similarly unimpressive. The100,000-iteration sto
hasti
 sear
h over network stru
tures provided a starting net-work stru
ture that was signi�
antly less useful for modeling the original
ontinuousdata than the stru
ture found by a single iteration of the greedy algorithm intializedfrom the empty network, whi
h required mu
h less time.4 When the greedy algorithmsare run for three iterations from their starting points, the greedy algorithm that had4Note that an \iteration" of our greedy algorithm involves mu
h more work than an \iteration"of the sto
hasti
 sear
h pro
edure;
omparing numbers of iterations between the two algorithmswould be meaningless. 132

70000

75000

80000

85000

90000

95000

0 2000 4000 6000 8000 10000 12000

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Const->ML
ML->ML

Disc Search->Const->ML

Figure 4.23: Bio dataset stru
ture-learning experiments:
omparing vs. more expen-sive algorithms.

133

been initialized with the network found by the sto
hasti
 sear
h pro
edure returns anetwork that is less a

urate than that found by an identi
al greedy algorithm startedfrom the empty network.Now we turn our attention to the Astro dataset. (Again, we will only use theversion in whi
h uniform noise of magnitude .001 has been added.) In the followingexperiments we will use the same learning parameters as in the Bio dataset; however,in order to keep the
omputational time tra
table, we restri
t Ss and Sf to use amaximum of 10000 training points and 2500 evaluation points. After ea
h iteration ofthe greedy network-learning algorithm, the quality of the resulting network stru
tureis evaluated by reparameterizing the network with joint multilinear density treeslearned with the entire training set.Due to the amount of CPU time required for stru
ture-learning experiments on thisdataset, we try a smaller set of variations of the greedy network-learning algorithm:\Dis
4!ML", \Dis
8!ML", \Const w/Dis
8 Ar
 S
ores!ML", and \Const!ML".We also in
lude an experiment in whi
h the previously mentioned sto
hasti
 sear
halgorithm is employed for 100,000 iterations on a version of the dataset that hasbeen dis
retized to 8 values per variable and restri
ted to a randomly sampled 10,000training datapoints. (We also tried using 10,000 iterations on 100,000 datapointsinstead; this took about the same amount of time but the learned networks wereslightly less a

urate.) This �nal algorithm is labelled \100000-it Dis
8 Sear
h!ML".The results are shown in Figure 4.24. The Dis
4!ML algorithm is not shownon the plot be
ause it performed extremely poorly: attempting to reparameterizethe network found by the �rst iteration with multilinear density trees took over fourhours (per
ross-validation fold), and the resulting networks were less a

urate thanthose found by the �rst iteration of any of the other greedy learning algorithms.On the other hand, the Dis
8!ML algorithm performed very well on this dataset,�nding networks about as a

urate as those found by any of the other algorithms butin signi�
antly less time. Const w/Dis
8 Ar
 S
ores!ML found networks of aboutthe same quality, but in somehat more time. Const!ML had still not quite foundnetworks of the same quality after over twi
e as mu
h time as Const w/Dis
8 Ar
S
ores!ML. Using the sto
hasti
 sear
h pro
edure on the dis
retized data (\100000-it Dis
8 Sear
h!ML") produ
ed network stru
tures that were less a

urate than anyfound by any versions of the greedy algorithm.While we do not supply a graph here similar to Figure 4.22
omparing the use of134

3.1e+06

3.15e+06

3.2e+06

3.25e+06

3.3e+06

3.35e+06

3.4e+06

0 5000 10000 15000 20000

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Disc8->ML
Const w/Disc8 Arc Scores->ML

Const->ML
100000-it Disc8 Search->ML

Figure 4.24: Astro dataset stru
ture-learning experiments.

135

di�erent kinds of density trees for the �nal network parameterizations, Se
tion 4.8.6in
ludes results for su
h a
omparison. As in the Bio dataset, trees employing multi-linearly interpolation appear to result in the most a

urate �nal density estimators.The stru
ture-learning results on the Astro and Bio dataset suggest that beingable to use di�erent types of density trees for di�erent stages of the network-learningalgorithm
an be very useful for �nding a

urate networks in a reasonable amount oftime. In parti
ular, using simple
ontingen
y-table-like density trees over dis
retizeddata for Sf appears desirable to maintain reasonable speed, but using them for Ss aswell
an
ause the algorithm to be very sensitive to the dis
retization level used and
an sometimes lead to poor a

ura
y. Using density trees with multilinearly interpo-lated leaves appears to be the most a

urate
hoi
e for the �nal parameterization ofthe networks.The results also suggest that our greedy network-learning algorithm is
apable of�nding a

urate networks quite qui
kly
ompared to the sto
hasti
 sear
h pro
edurewe tested against. However, it may be that the parti
ular sto
hasti
 sear
h pro
edureused here was not parti
ularly eÆ
ient; further study is warranted.4.8.6 Marginal distribution
atteningIn this se
tion we examine the e�e
ts of the marginal distribution
attening algorithmdis
ussed in Se
tion 4.7 on density trees employing
onstant, exponential, independentlinear, or multilinear leaves. Experiments are performed on both the Bio and Astrodatasets, with multiple types and magnitudes of noise added to them. In additionto gauging the usefulness of marginal distribution
attening, these experiments alsoserve to
ompare the e�e
tiveness of the di�erent leaf distributions.For ea
h dataset, the same network stru
tures are used a
ross all algorithms.The network stru
tures used were found via running four iterations of the \Constw/Dis
8 Ar
 S
ores" version of the greedy stru
ture-learning algorithm (see the pre-vious se
tion for details). The network stru
ture used during a parti
ular fold of the
ross-validation was learned using only the training data for that fold. (These resultsare thus not dire
tly
omparable with those in se
tions previous to Se
tion 4.8.5.) Fig-ures 4.25 and 4.26 summarize the results. (The times required to learn the networkstru
tures are not in
luded in the listed learning times.)The results show that using the marginal distribution
attening algorithm
an136

Algorithm

Joint, Unif.

Joint, Unif. w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Secs)

 0 120

Test-Set Log-Likelihood

 82800 95000

Bio + .001 Uniform noise

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Secs)

 0 130

Test-Set Log-Likelihood

 77000 86000

Bio + .001 Gaussian noise

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 46500 49000

Bio + .02 Gaussian noise

Figure 4.25: Experimental results for marginal distribution
attening on Bio datasets
137

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Mins)

 0 45

Test-Set Log-Likelihood

 3.32e+06 3.4e+06

Astro + .001 Unif noise

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Mins)

 0 35

Test-Set Log-Likelihood

 2.88e+06 2.94e+06

Astro + .001 Gaussian noise

Figure 4.26: Experimental results for marginal distribution
attening on Astrodatasets

138

signi�
antly in
rease a

ura
y in some situations where the marginal distributionsexhibit sharp features, although it also de
reases a

ura
y in other situations. Inparti
ular, it signi�
antly helped all of the di�erent density tree types on the Bio.001 Uniform dataset, and the uniform-leaf and exponential-leaf trees on the Bio.001 Gaussian dataset. (It also helped the exponential-leaf trees on both the Astro.001 Uniform and Astro .001 Gaussian datasets, but as we will dis
uss shortly thisis probably mostly due to a pe
uliarity of the exponential distribution that
ausesit to intera
t poorly with the greedy variable sele
tion method employed by the treestru
ture-learning algorithm.) This suggests that marginal distribution
attening
anbe a useful tool in
ases where the variables are known to have
ompli
ated marginaldistributions. However, it should not be applied blindly.The learning times listed for the algorithms with marginal distribution
atteningin
lude the extra times required to learn all the one-dimensional density trees for the
attening pro
ess. Notably, the total learning times with
attening were neverthelessoften shorter than the learning times without. This is probably due to the fa
t thatmarginal distribution
attening tends to result in density trees of more even depthwhen the midpoint bran
h threshold method is used. Density trees of even depthare faster to learn than skewed ones be
ause on average ea
h datapoint is involved infewer leaf-learning attempts.Throughout these results, multilinear interpolation almost always resulted in themost a

urate density estimation, the ex
eptions being on the low-noise Bio datasetswhen marginal distribution
attening was employed, in whi
h
ase exponential leavesworked better. However, it was also the most
omputationally expensive, and the dif-feren
e in a

ura
y between multilinear interpolation and independent interpolationwas statisti
ally insigni�
ant on the Astro datasets. Both multilinear and independentinterpolation resulted in signi�
antly greater a

ura
y than
onstant-density leavesin all tests.The performan
e of the exponential-distribution trees was notably in
onsistent |the best of all the estimators on the Bio .001 Uniform distribution when marginal dis-tribution
attening was used, but the worst of all on the Astro datasets when it wasnot used. An examination of the Astro datasets and the properties of the trun
atedexponential distribution reveals one possible explanation. The Astro dataset has sev-eral variables in whi
h the marginal distributions' means are very
lose to zero. As itturns out, the trun
ated exponential distribution has the following property: when a139

variable's distribution is
on
entrated
lose to one side of a leaf, repla
ing that leafwith a one-level density stump bran
hing on that variable with a threshold anywherenear the
enter of the old leaf
auses only a very small
hange in the log-likelihoodof the data. This
auses the greedy bran
h variable sele
tion me
hanism to preferbran
hing on other variables when exponential leaves are being used, whereas theother leaf distribution types we examine will tend to bran
h on the variable with theskewed distribution, whi
h tends to eventually lead to more a

urate trees. The fa
tthat the marginal distribution
attening algorithm helps exponential-leaf density treesmore than it helps others is probably due to the fa
t that the
attened distributionstrigger this pathologi
al behavior less frequently. Supplemental experiments in Ap-pendix A.2 provide further eviden
e that the problems with exponential-distributionleaves are indeed
aused by poor intera
tions with the greedy variable sele
tion algo-rithm. It may be possible to improve the a

ura
y of exponential-leaf density treesby spe
ial-
asing this situation or using better bran
h threshold sele
tion algorithms;sin
e exponential distributions are faster to �t than the other non-uniform distribu-tions, further resear
h along these lines would be useful.4.8.7 Density trees vs. global mixture modelsThroughout our experiments so far, all the probability models we have
ompared havebeen based on sparsely
onne
ted Bayesian networks in whi
h no hidden variables areemployed. While density trees appear to be good
andidates to use for the
ondi-tional distributions of su
h networks, the question remains whether sparsely
onne
tedBayesian networks are
apable of a

urately modeling real-world data, parti
ularlywhen an appropriate network stru
ture is not known beforehand. Is it possible toperform the required
ombinatorial sear
h through network stru
tures and learn allthe ne
essary
onditional distributions in less time than would be required to learnthe parameters of a single unfa
tored joint model for the entire distribution, and havethe resulting Bayesian network still be a more a

urate density estimator than theunfa
tored model? In this se
tion we provide experimental results suggesting thatthe answer is \yes", at least in some
ases.We
ompare our density-tree-based Bayesian network learning algorithm with Au-toClass [CS96℄, an unsupervised learning algorithm for mixture models that employsan approximately Bayesian version of EM. In our experiments, AutoClass models ea
hmixture
omponent with a full-
ovarian
e Gaussian over the
ontinuous variables and140

an independent multinomial distribution for ea
h dis
rete variable. (Informal experi-ments with diagonal-
ovarian
e Gaussians rather than full-
ovarian
e ones resulted inworse density estimation.) For speed, we use the publi
ly available C implementationrather than the LISP implementation.AutoClass is started o� with numbers of mixture
omponents that were
lose tothe best numbers found in informal preliminary testing; this is to ensure we do not
ripple the algorithm needlessly by having it waste too mu
h time optimizing theparameters of distributions with far too many or too few mixture
omponents. WhileAutoClass is an \anytime algorithm" in that it has no de�nite termination
riterionand will supposedly �nd better solutions the longer it is run, in our experiments theamount of time we gave it was largely irrelevant to the a

ura
y of the resulting densityestimators as long as it tried a nonzero number of mixtures with approximately theright number of
omponents. In pra
ti
e we would not normally know the
orre
tnumber of mixture
omponents to use ahead of time, but a roughly
orre
t number
an be found in a reasonable amount of time by trying mixtures with 1
omponent, 2
omponents, 4
omponents, 8
omponents, and so forth, until the performan
e startsdropping, or AutoClass begins returning mixtures with signi�
antly fewer
omponentsthan the mixtures are initialized with. (AutoClass apparently has no me
hanismfor adding
omponents to a mixture \on the
y" during a parameter optimizationrun, but it does dete
t and delete
omponents that it deems unne
essary.) WhenAutoClass terminates, we extra
t the mixture model it thinks is best, and we use itsmaximum-likelihood parameters. (We also add the same uniform-ba
kground \sla
kdistribution" used in our density trees to handle outliers, as dis
ussed in Se
tion 4.4.4;however, this appears to improve the a

ura
y of the mixture models only negligibly.)We perform two di�erent tests on AutoClass with ea
h Bio dataset: one in whi
hAutoClass is given two hours (per
ross-validation fold) to �nd a good mixture, andanother in whi
h it is given roughly the same amount of time taken by our density-tree-based Bayesian network learning algorithm. We attempted to give AutoClassthree hours on ea
h Astro dataset; however, as
urrently implemented, the algorithmapparently pays no attention to the
lo
k ex
ept when it reinitializes EM with a newstarting point, and on this dataset the algorithm
an take hours for a single run of EMif the number of
enters is large. This resulted in the algorithm taking an average ofover �ve hours per
ross-validation fold rather than three. (Informal experiments inwhi
h only a randomly sele
ted subsample of 10,000 datapoints were used for trainingwere attempted, but this seemed to result in less a

urate density estimators despite141

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

AutoClass

Learning time (Mins)

 0 125

Eval time (Secs)

 0 25

Test-Set Log-Likelihood

 87000 92000

Bio + .001 Uniform noise

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

AutoClass

Learning time (Mins)

 0 125

Eval time (Secs)

 0 20

Test-Set Log-Likelihood

 81500 87000

Bio + .001 Gaussian noise

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

Learning time (Hrs)

 0 6

Eval time (Secs)

 0 1200

Test-Set Log-Likelihood

 3e+06 3.5e+06

Astro + .001 Uniform Noise

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

Learning time (Hrs)

 0 6

Eval time (Secs)

 0 2000

Test-Set Log-Likelihood

 2.85e+06 2.95e+06

Astro + .001 Gaussian Noise

Figure 4.27: Automati
ally learned Bayesian networks w/density trees vs. globalmixture models learned by AutoClass.the greater number of EM trials that
ould be performed within the time limit withthe smaller amount of data.)We
ompare AutoClass to the same Bayesian network learning algorithm that wasemployed in Se
tion 4.8.6: four iterations of our greedy-network algorithm are per-formed, with dis
retized data (8 values per variable) used for Sf ,
onstant-density-leaftrees used for Ss, and multilinear-interpolation density trees for the �nal distribution.The results we list here are identi
al to those in Se
tion 4.8.6, ex
ept here the resultsin
lude the time required to learn the network stru
ture.The results are summarized in Figure 4.27.AutoClass produ
ed more a

urate density estimators for the Bio dataset whenthe noise added to the dataset was Gaussian | the same type of distribution Au-toClass uses for its mixture
omponents. On the other hand, our density-tree-basedBayesian network algorithm produ
ed more a

urate density estimators on the Biodataset was uniform | a distribution type more easily modeled by the multilinear142

leaves of the density tree. Thus, the results on the Bio dataset are somewhat in
on-
lusive. However, our Bayesian network algorithm produ
ed more a

urate densityestimation than Auto
lass on the Astro dataset even when the noise added was Gaus-sian. Learning these Bayesian networks also took signi�
antly less time; furthermore,evaluating the resulting networks was also faster than evaluating the mixture modelswhen the network's density trees had been approximately
onditionalized.4.9 Con
lusions, Related Work, and Possible Ex-tensionsThroughout this
hapter we have developed and evaluated a family of algorithms
a-pable of qui
kly �nding a

urate fa
tored probability density models over dozens of
ontinuous and dis
rete variables from tens of thousands of datapoints. The potentialappli
ations for these algorithms are similar to the potential appli
ations of Mix-netsdes
ribed in Se
tion 3.5. As with Mix-nets (Se
tion 3.5.1), the
onditional densitytree-based algorithms
an be applied to learning
lassi�ers similar in nature to TAN
lassi�ers [FGG97℄. The results of some preliminary experiments along these linesare provided in Appendix A.5; however, further exploration is ne
essary to determinewhether the resulting
lassi�ers are useful and how they might be improved. Thedensity tree-based models
an also be used straightforwardly for anomaly dete
tion(Se
tion 3.5.2), although it is possible that the dis
ontinuous nature of the probabilitydensities modeled by
onditional density trees makes it less useful than Mix-nets forthat task. Inferen
e may be also performed with density-tree-based Bayesian net-works, either via sampling approa
hes su
h as likelihood weighting, or via message-passing algorithms employing dynami
 dis
retization [KK97℄. The density trees forwhi
h we have provided learning algorithms are very similar in nature to the repre-sentations used for dis
retization-based message-passing algorithms; thus,
onditionaldensity tree learning algorithms may be a natural
hoi
e to use when we are fa
ed witha situation in whi
h we wish to be able to perform message-passing-based inferen
ebut we do not know the distributions' parameters a priori. In order to guarantee
on-vergen
e to the
orre
t distribution, message-passing algorithms require the graphi
almodels to be de
omposable (i.e.
hordal), and the network stru
ture-sear
h routineused here does not take this into a

ount. However, eÆ
ient algorithms for performingsear
hes over de
omposable models have re
ently been developed [DGJ01℄; modify-143

ing the network sear
h algorithms used in this thesis to use these algorithms is onepotentially interesting line of further resear
h.Be
ause the
onditional density tree algorithms here were designed for speed aswell as a

ura
y, they present an appealing
hoi
e of representation to use for pra
ti
al
ompression tasks. Naturally, when
ompressing
ontinuous values, the
ompressionmust be lossy if it is to save a signi�
ant amount of spa
e. Modifying our densitytree learning algorithms to take a desired level of a

ura
y into
onsideration wouldbe fairly straightforward. Furthermore, be
ause the distributions represented by thetrees de
ompose analyti
ally into nonoverlapping regions | as opposed to the over-lapping Gaussian mixture models used in Chapter 3 | no bits-ba
k
oding would bene
essary.In re
ent related resear
h, a system
alled SPARTAN [BGR01℄ has been devel-oped for lossily
ompressing datasets by using networks of CART-like de
ision andregression trees.5 SPARTAN uses automati
ally learned Bayesian network stru
turesas guides with whi
h to
reate these networks. However, the network models learnedby SPARTAN are not a
tually density estimators, and they have several importantlimitations. Ea
h leaf of the trees SPARTAN employs only provides a point estimateof the variable being predi
ted. If this predi
ted value is insuÆ
iently a

urate for aparti
ular datapoint, the a
tual value must be marked as an \outlier" and en
odedvia other means. Be
ause only this point estimate is provided rather than a densityover all possible values of the output variable, there is no me
hanism with whi
h toeÆ
iently en
ode small
orre
tions between the maximum-likelihood predi
ted val-ues and the a
tual values. This in turn for
es SPARTAN to restri
t its predi
tionnetworks so that any given variable in the domain that is used to predi
t other vari-ables
annot itself be predi
ted, and must therefore be en
oded via other means |otherwise, predi
tion errors would a

umulate. SPARTAN's CART-like trees
ouldbe modi�ed so that the trees provide density estimates; however, as we have seen inSe
tion 4.8.2, CART-like tree-based density estimation algorithms that do not allowsplits on the variable being predi
ted
an perform mu
h worse than those that do.Having said that, SPARTAN's approa
h may be appropriate when de
ompression and
ompression speed is
ru
ial, or when it is desirable to de
ompress
ertain variablevalues in a random a

ess fashion without de
ompressing all the other variables.5SPARTAN was developed after the material in Chapter 2 was published [DM99℄, although theauthors appear unaware of previously existing resear
h on Bayesian network-based
ompression. Thematerial in this
hapter of the thesis was developed independently of SPARTAN.144

While allowing the density trees to split on the output variables would probablyhelp
ompression performan
e, it is un
lear whether other di�eren
es between the den-sity tree algorithms examined here would have mu
h pra
ti
al impa
t on
ompressionrates. For example, even if ea
h variable value is 15% more likely on average whenusing density trees that use multilinear leaves rather than
onstant-density ones, thisresults in saving only a fra
tion of a bit per en
oded value. In most su
h situations itwould probably be better to simply use strati�ed
onditional trees or
onditionalizedjoint density trees with uniform-density leaves for maximum speed.Be
ause the density tree learning algorithms we use throughout this thesis treatthe data in di�erent subtrees independently, the resulting density estimates will gen-erally have dis
ontinuities at the tree's bran
h thresholds. It may be possible toimprove the a

ura
y of the density estimators by attempting to enfor
e
ontinuitywhenever possible. For example, in the
ase where there is only one
ontinuous vari-able, if we are given a density tree stru
ture then it is easy to learn a set of linearinterpolations in the leaves that provide a
ontinuous density estimate. To do so,we
ould use the EM pro
edure des
ribed in Se
tion 4.2.4 to �t all of the leaves'interpolations simultaneously; rather than having two independent hidden
lasses forevery leaf, we would \tie together" the two
lasses to either side of any bran
h thresh-old. Unfortunately, there are problems with this type of approa
h. First, the simpledivide-and-
onquer nature of the tree stru
ture-learning algorithm breaks down; thee�e
t of performing a split in one part of the tree would now depend on the stru
tureof other parts of the tree. Furthermore, this method does not generally apply to twoor more dimensions unless the density tree has a gridlike stru
ture. If the density treestru
ture is gridlike, then the multilinear interpolations within the di�erent leaves
an be
onstrained in a manner similar to the one-dimensional
ase dis
ussed aboveto ensure
ontinuity. However, if the density tree stru
ture is not gridlike, then
on-tinuity
annot be enfor
ed straightforwardly in this manner. For example,
onsiderthe simple two-dimensional density tree in Figure 4.28. Within leaf A, multilinearinterpolation would interpolate between the values at
orners 1, 2, 8, and 9; withinleaf B, multilinear interpolation would use
orners 2, 3, 4, and 5. As a result, a dis-
ontinuity will exist along the edge between
orners 2 and 4 unless the value at
orner4 happens to be .75 times the value at
orner 2 plus .25 times the value at
orner 9;similar dis
ontinuities exist along the edge (4, 6) and (6, 9). Naturally, this situation
an be remedied by splitting leaf A into several new leaves, but these additional splits
ould
reate the need for further splits in other leaves adja
ent to A, essentially
re-145

1 3

A

D

C

B
4 5

6 7

8 9 10

2

Figure 4.28: An illustration of a density tree stru
ture for whi
h ensuring
ontinuityis diÆ
ult.ating a gridlike stru
ture. A
omplex algorithm exists for ensuring
ontinuity in thetwo-dimensional
ase without
reating arbitrarily many new splits [Gro89℄, but thisdoes not s
ale to three dimensions or higher.With this in mind, it may be worth investigating how well the interpolating densitytrees des
ribed in this
hapter
ompare to grid-like density estimators. Su
h grid-likedensity estimators
an be made
ontinuous with little diÆ
ulty; this may help o�setthe negative e�e
ts of their �xed resolution. It may also be possible to
ombinemultiple grids with di�erent resolutions over di�erent variables in a manner similarto CMACs [Alb81℄ or sparse grids [Zen91℄ to a
hieve higher predi
tive a

ura
y thanwith a single grid or tree over all the variables. However, evaluating these multiplegrids would likely be signi�
antly more
omputationally expensive than evaluatingthe density trees used here. Multivariate adaptive regression splines [Fri88℄ are alsoworth investigating.The tree-based density estimators used in this
hapter are more
apable of han-dling high-arity dis
rete variables than the mixture tables used in Chapter 3, sin
e thetree-learning algorithms will rarely
reate bran
hes testing them unless these bran
hesare justi�ed by the data. Furthermore, high-arity dis
rete variables
an help predi
tother variables even in joint density trees that never bran
h on them at all, sin
ethe leaves of the trees
ontain information about these variables' distributions. Itmay be possible to further in
rease the usefulness of su
h high-arity variables by us-ing bran
hes in whi
h multiple variable values are mapped to the same
hild of thebran
h. Clustering te
hniques have been used in the past to �nd good
hoi
es for146

whi
h values are mapped to whi
h bran
h
hildren (e.g. [BFOS84℄, [Cho91℄) withinthe
ontext of
lassi�
ation and regression trees; analogous te
hniques
ould be devel-oped for interpolating density trees. However, employing su
h
lustering te
hniqueswould probably signi�
antly redu
e the speed of our tree-learning algorithms.While we have not yet
arefully measured the memory
onsumption of the densitytrees employed throughout this thesis, informal examination of the amount used inour implementation suggests that they typi
ally take up roughly as mu
h memory asthe data from whi
h they are learned, to within an order of magnitude. For mostappli
ations, the amount of pro
essor time required to learn the models is probablymore restri
tive than the amount of spa
e taken up by the learned models, given theCPU speeds and memory
apa
ities of
urrent PCs. For
ompression, note that thenumber of bits required to represent the models
ompa
tly o�ine (e.g. on disk) ismu
h less than the number used here in memory (where the model is optimized foreÆ
ient memory a

esses, et
.). Furthermore, the tree-learning algorithms used inthis
hapter
urrently do not attempt to minimize spa
e usage, but
ould be modi�edto do so; and even if the algorithms are not modi�ed, they
an be made to produ
esmaller trees simply by providing them with smaller training sets.

147

148

Chapter 5
Con
lusions
5.1 Thesis
ontribution summaryIn the �rst part of this thesis, I have developed Bayesian network-based algorithmsthat are
apable of
ompressing dis
rete datasets with
ompression ratios mu
h higherthan a
hieved by state-of-the-art bla
k-box
ompression programs, but that are still
apable of megabyte-per-se
ond de
oding speeds (Chapter 2). In parti
ular:� I have shown that ex
ellent
ompression
an be a
hieved on real-world datasetsby using arithmeti

oding in
onjun
tion with automati
ally learning Bayesiannetworks that are sparsely
onne
ted and employ no hidden variables. Thisallows de
oding to be performed reasonably qui
kly (Se
tions 2.2.1 and 2.2.2).� I have shown that even better
ompression
an be a
hieved by automati
allylearning dynami
 Bayesian networks that model dependen
ies between adja
entdataset items, possibly after the dataset has been sorted (Se
tion 2.3).� I have developed a type of modi�ed Bayesian network to employ in
onjun
tionwith Hu�man
oding in order to address Hu�man
oding's limitations, andhave developed algorithms for learning these networks (Se
tion 2.3.1). Thisallows for signi�
antly faster de
oding than possible with arithmeti

oding,with relatively little redu
tion in the
ompression rate.In the se
ond and third parts of the thesis, I have developed Bayesian network-based algorithms for learning joint distributions over dis
rete and
ontinuous vari-149

ables. In the se
ond part (Chapter 3), I have shown how re
ently developed algo-rithms for qui
kly learning Gaussian mixture models over small sets of
ontinuousvariables [Moo99℄
an be pra
ti
ally used to model distributions over mu
h largersets of
ontinuous and dis
rete variables via using automati
ally learned Bayesiannetworks. In the third part, whi
h forms the bulk of the thesis, I have explored awide variety of novel tree-based models for
onditional density estimation, and shownhow to use them in automati
ally learned Bayesian networks to model
omplex dis-tributions over many
ontinuous and dis
rete variables. In parti
ular:� I have des
ribed a wide variety of possible tree-based learning algorithms for rep-resenting joint distributions over small sets of variables (Se
tions 4.2 through 4.4).� I have shown several novel ways of generalizing these models to learn and rep-resent
onditional distributions:{ Strati�ed
onditional density trees (Se
tion 4.5.1), whi
h are learned todire
tly model the
onditional distribution. These trees
an bran
h onthe variable to be predi
ted on
e all bran
hing on the input variables is�nished, thus allowing the representation of
omplex
onditional distribu-tions.{ Joint density trees that are used
onditionally \on the
y" (Se
tion 4.5.2).These are faster to learn than strati�ed
onditional density trees, and are(somewhat surprisingly) frequently more a

urate as well. Unfortunately,they are slow to evaluate.{ Conditionalized joint density trees that are used either exa
tly (Se
tion 4.5.3)or approximately (Se
tion 4.5.4). These trees provide an appealing
om-bination of fast learning, fast evaluation, and a

ura
y.� I have provided a
exible
lass of heuristi
 Bayesian network stru
ture-learningalgorithms employing these
onditional density trees (Se
tion 4.6) to pra
ti
allylearn a

urate distributions over dozens of
ontinuous and dis
rete variablesfrom many thousands of datapoints.� I have presented a marginal distribution
attening method that
an sometimesimprove the performan
e of these tree-based
onditional density estimators (Se
-tion 4.7). 150

� I have performed extensive experimental evaluations of all the above models(Se
tion 4.8; Appendix A).5.2 Possible avenues for further resear
hPossible extensions of the resear
h performed in this thesis were already dis
ussed atthe ends of the appropriate
hapters. In
losing, we brie
y re
apitulate a few of themore important ones:� Further
omparisons of the
ompression te
hniques developed in Chapter 2 ver-sus other te
hniques. In parti
ular, it would be interesting to
ompare the
ompression rates a
hievable with the sparse Bayesian networks used here withthat of the densely
onne
ted Bayesian networks used in Frey's work [Fre98℄,although su
h densely
onne
ted networks probably require signi�
antly more
omputational overhead.� Extensions of the
ompression te
hniques in Chapter 2 to adaptive
oding |that is, allowing the parameters and stru
ture of the networks to
hange as thedata is pro
essed in one pass.� Appli
ation of the density trees developed in Chapter 4 to the
ompressionof datasets
ontaining
ontinuous variables. A
omparison of the
ompressionrates and speed a
hievable with the density trees developed here versus that ofthe simpler trees used in SPARTAN [BGR01℄ would be parti
ularly interesting.� Appli
ation of the models developed in Chapter 3 and Chapter 4 to
lassi�
ationtasks. (Some preliminary results on applying density trees to
lassi�
ation aresupplied in Appendix A.5, but further development and experimentation arewarranted.)

151

152

Bibliography
[Ala96℄ S. Alag. Inferen
e Using Message Propogation and Topology Trans-formation in Ve
tor Gaussian Continuous Networks. In Pro
eedings ofthe Twelfth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI96),1996.[Alb81℄ J. S. Albus. Brains, Behaviour and Roboti
s. BYTE Books, M
Graw-Hill,1981.[Ber73℄ C. Berge. Graphs and hypergraphs. North-Holland, Amsterdam, 1973.Translated from Fren
h by E. Minieka.[BFOS84℄ L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�
ation andRegression Trees. Chapman & Hall, 1984.[BFR98℄ P. S. Bradley, U. Fayyad, and C. A. Reina. S
aling EM (Expe
tation-Maximization) Clustering to Large Databases. Te
hni
al Report MSR-TR-98-35, Mi
rosoft Resear
h, Redmond, WA, November 1998.[BGR01℄ S. Babu, M. Garofalakis, and R. Rastogi. SPARTAN: A Model-BasedSemanti
 Compression System for Massive Data Tables. In Pro
. ACMSIGMOD, 2001.[Bri90℄ J. S. Bridle. Probabilisti
 Interpretation of feedforward
lassi�
ation net-work outputs, with relationships to statisti
al pattern re
ognition. In F. F.Souli�e and J. H�erault, editors, Neuro
omputing: Algorithms, Ar
hite
turesand Appli
ations, pages 227{236. Springer-Verlag, 1990.[BW94℄ M. Burrows and D. J. Wheeler. A blo
k-sorting lossless data
ompressionalgorithm. Te
hni
al Report SRC-124, Digital Systems Resear
h Center,May 1994. 153

[CH87℄ G. V. Corma
 and R. N. Horspool. Data
ompression using dynami
Markov modelling. The Computer Journal, 30(6):541{550, De
ember1987.[CH92℄ G. F. Cooper and E. Herskovits. A Bayesian method for the indu
tion ofprobabilisti
 networks from data. Ma
hine Learning, 9:309{347, 1992.[Chi96℄ D. Chi
kering. Learning Bayesian networks is NP-
omplete. In D. Fisherand H.-J. Lenz, editors, Learning from Data: Arti�
ial Intelligen
e andStatisti
s V, pages 121{130. Springer-Verlag, 1996.[Cho91℄ P. A. Chou. Optimal Partitioning for Classi�
ation and Regression Trees.IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
e, 13(4),April 1991.[CKP85℄ Y. Choueka, S. T. Klein, and Y. Perl. EÆ
ient variants of Hu�man
odes in high level languages. In Pro
eedings of the Eighth InternationalACM SIGIR Conferen
e on Resear
h and Development in InformationRetrieval, pages 122{130. New York: ACM Press, June 1985.[CL68℄ C. K. Chow and C. N. Liu. Approximating dis
rete probability distribu-tions with dependen
e trees. IEEE Transa
tions on Information Theory,IT-14:462{467, 1968.[CLR90℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdu
tion to Algo-rithms. 1990.[CMN+95℄ J. Carpinelli, A. Mo�at, R. Neal, W. Salamonsen, L. Stuiver, and I. Wit-ten. Word, Chara
ter, and Bit Based Compression Using Arithmeti
Coding. Available for download at ftp://munnari.oz.au/pub/arith
oder/,1995.[CS96℄ P. Cheeseman and J. Stutz. Bayesian
lassi�
ation (AutoClass): The-ory and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, andR. Uthurasamy, editors, Advan
es in Knowledge Dis
overy and Data Min-ing. MIT Press, 1996.[CT91℄ T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,1991. 154

[CW84℄ J. G. Cleary and I. H. Witten. Data
ompression using adaptive
odingand partial string mat
hing. IEEE Transa
tions on Communi
ations,COM-32(4):396{402, April 1984.[DGJ01℄ A. Deshpande, M. Garofalakis, and M. I. Jordan. EÆ
ient stepwise sele
-tion in de
omposable models. In Pro
eedings of the Seventeenth Confer-en
e on Un
ertainty in Arti�
ial Intelligen
e (UAI2001), 2001.[DH73℄ R. Duda and P. Hart. Pattern Classi�
ation and S
ene Analysis. JohnWiley & Sons, 1973.[DHNZ95℄ P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The Helmholtzma
hine. Neural Computation, 7:889{904, 1995.[DK88℄ T. Dean and K. Kanazawa. Probabilisti
 temporal reasoning. In AAAI-88Pro
eedings, pages 524{528, 1988.[DLR77℄ A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood fromin
omplete data via the EM algorithm. Journal of the Royal Statisti
alSo
iety, B 39:1{39, 1977.[DM95℄ E. Driver and D. Morrell. Implementation of Continous Bayesian Net-works Using Sums of Weighted Gaussians. In Pro
eedings of the EleventhConferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI95), 1995.[DM99℄ S. Davies and A. Moore. Bayesian Networks for Lossless Dataset Com-pression. In Conferen
e on Knowledge Dis
overy in Databases (KDD-99),1999.[DM00℄ S. Davies and A. Moore. Mix-nets: Fa
tored Mixtures of Gaussians inBayesian Networks with Mixed Continuous and Dis
rete Variables. InPro
eedings of the Sixteenth Conferen
e on Un
ertainty in Arti�
ial In-telligen
e (UAI2000), 2000.[FG96a℄ N. Friedman and M. Goldszmidt. Dis
retizing Continuous AttributesWhile Learning Bayesian Networks. In Pro
eedings of the Thirteenth In-ternational Conferen
e on Ma
hine Learning, pages 157{165, 1996.[FG96b℄ N. Friedman and M. Goldszmidt. Learning Bayesian Networks with Lo
alStru
ture. In Pro
eedings of the Twelfth Conferen
e on Un
ertainty inArti�
ial Intelligen
e (UAI96), 1996.155

[FG97℄ N. Friedman and M. Goldszmidt. Sequential update of Bayesian networkstru
ture. In Pro
eedings of the Thirteenth Conferen
e on Un
ertainty inArti�
ial Intelligen
e (UAI97), 1997.[FGG97℄ N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network
lassi�ers.Ma
hine Learning, 29:131{163, 1997.[FGL98℄ N. Friedman, M. Godszmidt, and T. J. Lee. Bayesian Network Classi�
a-tion with Continuous Attributes: Getting the Best of Both Dis
retizationand Parametri
 Fitting. In Pro
eedings of the Fifteenth International Con-feren
e on Ma
hine Learning (ICML), 1998.[FHD96℄ B. J. Frey, G. E. Hinton, and P. Dayan. Does the wake-sleep algorithmprodu
e good density estimators? In Advan
es in Neural InformationPro
essing Systems 8. MIT Press, 1996.[FHT+02℄ E. Frank, M. Hall, L. Trigg, R. Kirkby, G. S
hmidberger, M. Ware, X. Xu,R. Bou
kaert, Y. Wang, S. Inglis, and I. H. Witten. Weka 3 - DataMining with Open Sour
e Ma
hine Learning Software in Java. Availableat http://www.
s.waikato.a
.nz/~ml/weka/, 1998-2002.[FI93℄ U. M. Fayyad and K. B. Irani. Multi-interval dis
retization of
ontinuous-valued attributes for
lassi�
ation learning. In Pro
. of 13th Int. JointConferen
e on Arti�
ial Intelligen
e. Morgan Kaufmann, 1993.[FMR98℄ N. Friedman, K. Murphy, and S. Russell. Learning the Stru
ture of Dy-nami
 Probabilisti
 Networks. In Pro
eedings of the Fourteenth Confer-en
e on Un
ertainty in Arti�
ial Intelligen
e (UAI98), 1998.[FN00℄ N. Friedman and I. Na
hman. Gaussian Pro
ess Networks. In Pro
eed-ings of the Sixteenth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e(UAI2000), 2000.[FNP99℄ N. Friedman, I. Na
hman, and D. Pe�er. Learning Bayesian Network Stru
-tures from Massive Datasets: The Sparse Candidate Algorithm. In Pro-
eedings of the Fifteenth Conferen
e on Un
ertainty in Arti�
ial Intelli-gen
e (UAI99), pages 206{215, 1999.[Fre98℄ B. J. Frey. Graphi
al Models for Ma
hine Learning and Digital Commu-ni
ation. MIT Press, 1998. 156

[Fri88℄ J. H. Friedman. Multivariate Adaptive Regression Splines. Te
hni
alReport No. 102, Department for Statisti
s, Stanford University, 1988.[GH94℄ D. Geiger and D. He
kerman. Learning Gaussian Networks. Te
hni
alReport MSR-TR-94-10, Mi
rosoft Resear
h, 1994.[Gro89℄ E. Grosse. LOESS: Multivariate Smoothing by Moving Least Squares.In L. L. S
humaker C. K. Chul and J. D. Ward, editors, ApproximationTheory VI. A
ademi
 Press, 1989.[HDCM89℄ N. H. Heydon-Dumbleton, C. A. Collins, and H. T. Ma
Gillivary. MN-RAS, 268, 1989.[HDFN95℄ G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep al-gorithm for unsupervised neural networks. S
ien
e, 268:1158{1161, 1995.[HG95℄ D. He
kerman and D. Geiger. Learning Bayesian networks: a uni�
a-tion for dis
rete and Gaussian domains. In Pro
eedings of the EleventhConferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI95), 1995.[HGC95℄ D. He
kerman, D. Geiger, and D. M. Chi
kering. Learning Bayesian net-works: the
ombination of knowledge and statisti
al data. Ma
hine Learn-ing, 20:197{243, 1995.[HL90℄ D. S. Hirs
hberg and D. A. Lelewer. EÆ
ient de
oding of pre�x
odes.Communi
ations of the ACM, 33(4):449{459, April 1990.[HM97a℄ David He
kerman and Christopher Meek. Embedded Bayesian network
lassi�ers. Te
hni
al Report MSR-TR-97-06, Mi
rosoft Resear
h, Red-mond, WA, Mar
h 1997.[HM97b℄ David He
kerman and Christopher Meek. Models and sele
tion
riteria forregression and
lassi�
ation. In Pro
eedings of Thirteenth Conferen
e ofUn
ertainty in AI (UAI97), pages 223{228, Providen
e, RI, 1997. MorganKaufmann.[HT95℄ R. Hofmann and V. Tresp. Dis
overing Stru
ture in Continuous Vari-ables Using Bayesian Networks. In D. S. Touretzsky, M. C. Mozer, andM. Hasselmo, editors, Advan
es in Neural Information Pro
essing Systems8. MIT Press, 1995. 157

[Huf51℄ D. A. Hu�man. A Method for the Constru
tion of Minimum Redundan
yCodes. In Pro
eedings of the IRE, volume 40, pages 1098{1101, 1951.[HZ94℄ G. E. Hinton and R. S. Zemel. Autoen
oders, Minimum Des
riptionLength and Helmholtz Free Energy. In Advan
es in Neural InformationPro
essing Systems 6. MIT Press, 1994.[JGJS98℄ M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An Intro-du
tion to Variational Methods for Graphi
al Models. In M. I. Jordan,editor, Learning in Graphi
al Models. Kluwer A
ademi
 Publishers, 1998.[JL95℄ G. John and P. Langley. Estimating Continuous Distributions in BayesianClassi�ers. In Pro
eedings of the Eleventh Conferen
e on Un
ertainty inArti�
ial Intelligen
e (UAI95), 1995.[JP99℄ T. Jebara and A. Pentland. The Generalized CEM Algorithm. In Advan
esin Neural Information Pro
essing Systems 12. MIT Press, 1999.[KK97℄ A. Kozlov and D. Koller. Nonuniform dynami
 dis
retization in hybridnetworks. In Pro
eedings of the Thirteenth Conferen
e on Un
ertainty inArti�
ial Intelligen
e (UAI97), 1997.[Koh96℄ R. Kohavi. S
aling Up the A

ura
y of Naive-Bayes Classi�ers: aDe
ision-Tree Hybrid. In Pro
eedings of the Se
ond International Con-feren
e on Knowledge Dis
overy and Data Mining (KDD-96), 1996.[KS80℄ R. Kinderman and J. L. Snell. Markov Random Fields and Their Appli-
ations. Ameri
an Mathemati
al So
iety, Providen
e USA, 1980.[Lau96℄ S. Lauritzen. Graphi
al Models. Oxford University Press, 1996.[LB94℄ W. Lam and F. Ba

hus. Learning Bayesian belief networks: an approa
hbased on the MDL prin
iple. Computational Intelligen
e, 10:269{293,1994.[MC98a℄ S. Monti and G. F. Cooper. A Multivariate Dis
retization Method forLearning Bayesian Networks from Mixed Data. In Pro
eedings of theFourteenth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI98),1998. 158

[MC98b℄ S. Monti and G. F. Cooper. Learning Hybrid Bayesian Networks fromData. In M. I. Jordan, editor, Learning in Graphi
al Models. KluwerA
ademi
 Publishers, 1998.[MC99℄ S. Monti and G. F. Cooper. A Latent Variable Model for MultivariateDis
retization. In Pro
eedings of the Seventh International Workship onAI & Statisti
s (Un
ertainty 99), 1999.[ML98℄ A. W. Moore and M. S. Lee. Ca
hed SuÆ
ient Statisti
s for EÆ
ientMa
hine Learning with Large Datasets. Journal of Arti�
ial Intelligen
eResear
h, 8, 1998.[MM73℄ J. N. Morgan and R. C. Messenger. THAID: a sequential sear
h pro-gram for the analysis of nominal s
ale dependent variables. Ann Arbor:Institute for So
ial Resear
h, University of Mi
higan, 1973.[MN83℄ P. M
Cullagh and J. A. Nelder. Generalized Linear Models. Chapmanand Hall, 1983.[MNW95℄ A. Mo�at, R. Neal, and I. H. Witten. Arithmeti
 Coding Revisited. InPro
eedings of the IEEE Data Compression Conferen
e, Mar
h 1995.[Moo99℄ A. W. Moore. Very Fast EM-based Mixture Model Clustering using Mul-tiresolution kd-trees. In Advan
es in Neural Pro
essing Systems 12. MITPress, 1999.[Moo00℄ A. W. Moore. The An
hors Hierar
hy: Using the triangle inequality tosurvive high dimensional data. 2000.[MSD97℄ A. W. Moore, J. S
hneider, and K. Deng. EÆ
ient Lo
ally Weighted Poly-nomial Regression Predi
tions. In Pro
eedings of the 1997 InternationalMa
hine Learning Conferen
e. Morgan Kaufmann, 1997.[MT97℄ A. Mo�at and A. Turpin. On the implementation of minimum-redundan
ypre�x
odes. IEEE Transa
tions on Communi
ations, 45(10):1200{1207,O
tober 1997.[NCC+01℄ R. C. Ni
hol, S. Chong, A. J. Connolly, S. Davies, C. Genovese, A. M.Hopkins, C. J. Miller, A. W. Moore, D. Pelleg, G. T. Ri
hards, J. S
hnei-der, I. Szapudi, and L. Wasserman. Computational AstroStatisti
s: Fast159

and EÆ
ient Tools for Analysing Huge Astronomi
al Data Sour
es. In-vited talk at Statisti
al Challenges in Modern Astronomy III, July 2001.[NH98℄ R. M. Neal and G. E. Hinton. A view of the EM algorithm that justi�esin
remental, sparse, and other variants. In M. I. Jordan, editor, Learningin Graphi
al Models. Kluwer A
ademi
 Publishers, 1998.[Pas76℄ R. Pas
o. Sour
e Coding Algorithms for Fast Data Compression. Ph.D.Thesis, Stanford University, 1976.[Pea88℄ J. Pearl. Probabilisti
 Reasoning in Intelligent Systems: Networks of Plau-sible Inferen
e. Morgan-Kaufmann, 1988.[PTVF92℄ W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numeri
alRe
ipes in C (Se
ond Edition). Cambridge University Press, 1992.[Qui86℄ J. R. Quinlan. Indu
tion of de
ision trees. Ma
hine Learning, 1:81{106,1986.[Qui93℄ J. R. Quinlan. C4.5: Programs for Ma
hine Learning. Morgan Kaufmann,1993.[Ris76℄ J. J. Rissanen. Generalized Kraft inequality and arithmeti

oding. IBMJournal of Resear
h and Development, 20:198{203, May 1976.[Ros56℄ M. Rosenblatt. Remarks on Some Nonparametri
 Estimates of a DensityFun
tion. Ann. Math. Statist., 27:832{837, 1956.[Sah96℄ M. Sahami. Learning Limited Dependen
e Bayesian Classi�ers. In KDD-96: Pro
eedings of the Se
ond International Conferen
e on KnowledgeDis
overy and Data Mining, pages 335{338. AAAI Press, 1996.[Say96℄ K. Sayood. Introdu
tion to Data Compression. Morgan Kaufmann, 1996.[S
h78℄ G. S
hwarz. Estimating the dimension of a model. Annals of Statisti
s,6:461{464, 1978.[S
o92℄ D. S
ott. Multivariate Density Estimation. John Wiley & Sons, 1992.[Sie88℄ A. Siemi�nski. Fast de
oding of Hu�man
odes. Information Pro
esssingLetters, 26(5):237{241, May 1988.160

[SM00℄ P. Sand and A. W. Moore. Fast Stru
ture Sear
h for Gaussian MixtureModels. Submitted to Knowledge Dis
overy and Data Mining 2000, 2000.[Wel84℄ T.A. Wel
h. A Te
hnique for High-Performan
e Data Compression. IEEEComputer, pages 8{19, June 1984.[WMB99℄ I. H. Witten, A. Mo�at, and T. C. Bell.Managing Gigabytes: Compressingand Indexing Do
uments and Images. Morgan Kaufmann Publishers, In
.,1999.[WNC87℄ I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmeti

oding for data
ompression. Communi
ations of the Asso
iation for Computing Ma
hin-ery, 30:520{540, June 1987.[Zen91℄ C. Zenger. Sparse grids. In W. Ha
kbus
h, editor, Parallel Algorithms forPartial Di�erential Equations, Pro
eedings of the Sixth GAMM-Seminar,Kiel, 1990, pages 241{251. Vieweg, Brauns
hweig, 1991.[Ziv78℄ J. Ziv. Coding theorems for individual sequen
es. IEEE Transa
tions onInformation Theory, 24:389{394, 1978.[ZL77℄ J. Ziv and A. Lempel. A Universal Algorithm for Data Compression.IEEE Transa
tions on Information Theory, 23(3):337{343, May 1977.[ZL78℄ J. Ziv and A. Lempel. Compression of Individual Sequen
es via Variable-Rate Coding. IEEE Transa
tions on Information Theory, 24(5):530{536,September 1978.

161

162

Appendix A
Supplemental experimental results
A.1 Pruning, bran
h variable sele
tion, and bran
hthreshold sele
tionThroughout all other experiments in this thesis, we have used the greedy algorithmdes
ribed in Se
tion 4.4.1 for sele
ting bran
h variables, and the post-pruning methoddes
ribed in Se
tion 4.4.3 for determining when to use leaves rather than bran
hes.Furthermore, ea
h bran
h on a
ontinuous variable always used the midpoint of thebran
h variable's
urrently valid range as its split threshold. In this se
tion we performa series of experiments in whi
h these aspe
ts of the algorithms are varied:� The \Joint Uniform" and \Joint MLI" (\MLI" for \multilinear interpolation")algorithms use the same pruning, bran
h variable sele
tion, and bran
h thresh-old sele
tion strategies as before.� The \Joint Uniform w/Grid Sele
t" and \Joint MLI w/Grid Sele
t" algorithmsare identi
al to \Joint Uniform" and \Joint MLI," respe
tively, ex
ept the vari-able on whi
h to bran
h is determined by the \taking turns" strategy des
ribedin Se
tion 4.4.1.� The \w/Stopping" algorithms are identi
al to the
orreponding default algo-rithms ex
ept the pruning strategy has been
hanged from post-pruning tostopping (Se
tion 4.4.3). 163

� The \w/Greedy Threshold" algorithms are identi
al to the
orresponding de-fault algorithms ex
ept the threshold sele
tion algorithm has been
hanged fromthe midpoint method to the more expensive method des
ribed in Se
tion 4.4.2.The results are shown in Figures A.1 and A.2.When uniform-density leaves are employed, the greedy variable sele
tion algorithma
tually performs worse than the simpler \taking turns" method on all the syntheti
datasets and on the Bio dataset with high-magnitude noise. When multilinearlyinterpolated leaves are employed instead, however, greedy variable sele
tion neverperforms worse than the \taking turns" method, and performs signi�
antly better onthe Bio and Astro datasets. This may be due to the fa
t that the greedy algorithmis able to essentially \look further ahead" due to the added representational powera�orded by the nonuniform leaves it uses in the one-level density stumps it uses fortesting. The fa
t that greedy variable sele
tion does not generally help more may alsobe partially due to the relatively small number of variables modelled per tree in theseexperiments, and partially due the fa
t that the two variables in ea
h of the syntheti
datasets are essentially identi
al to ea
h other on a global s
ale.Comparing the results of the stopping and post-pruning algorithms reveals thatwhen uniform-density leaves are used, the stopping algorithm generally results inworse a

ura
y than the post-pruning algorithm; however, the stopping algorithmoften results in better a

ura
y than post-pruning when multilinearly interpolatedleaves are employed. See Se
tion 4.4.3 for a dis
ussion of this phenomenon.Comparing the \w/Greedy Threshold" algorithms with the algorithms employingthe default midpoint split threshold reveals that the more
ompli
ated threshold al-gorithm does in fa
t signi�
antly improve the a

ura
y of trees with uniform-densityleaves in most
ases. However, the a

ura
y of these trees is always still signi�-
antly worse than that of trees using multilinear leaves and the midpoint thresholdmethod. Futhermore, employing the more
ompli
ated threshold-
hoosing algorithmsigni�
antly in
reases the
omputational
ost of learning | so mu
h so that someof the alternative learning algorithms using multilinear leaves are usually both fasterand more a

urate. The more
ompli
ated threshold-
hoosing algorithm usually de-
reased the a

ura
y of the trees using multilinear leaves. An analogous version ofthe more
ompli
ated threshold-
hoosing algorithm tuned for multilinear-leaf treesrather than uniform-leaf trees might in fa
t improve the a

ura
y of multilinear-leaftrees; however, su
h an algorithm would be even more prohibitively time-
onsuming.164

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 12

Test-Set Log-Likelihood

 9600 10500

Connected (synth)

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 12

Test-Set Log-Likelihood

 10800 11700

Separate (synth)

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 12

Test-Set Log-Likelihood

 2800 3500

Voronoi (synth)

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 15

Test-Set Log-Likelihood

 12100 14100

Squiggles (synth)

Figure A.1: Experiments on alternative pruning, bran
h variable sele
tion, and bran
hthreshold sele
tion methods (syntheti
 datasets)165

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 73500 84500

Bio + .001 Unif noise

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 70000 78000

Bio + .001 Gaussian noise

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 44200 46500

Bio + .02 Gaussian noise

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Mins)

 0 60

Test-Set Log-Likelihood

 3.21e+06 3.342e+06

Astro + .001 Unif noise

Figure A.2: Experiments on alternative pruning, bran
h variable sele
tion, and bran
hthreshold sele
tion methods (s
ienti�
 datasets)166

A.2 \Swit
heroo" experimentsIn this se
tion we perform a series of experiments in whi
h one learning algorithmlearns a density tree, and then another learning algorithm is
onstrained to use thepreviously learned tree's bran
hing stru
ture. These experiments serve as a sanity
he
k ensuring that the di�eren
es in various algorithms' a

ura
ies are not entirelydue to subtle e�e
ts they have on the greedy density tree stru
ture-learning algorithm.(For example, it might be
on
eivable that the main reason interpolated leaves per-form better than uniform ones is that one-level de
ision stumps with interpolatedleaves give more a

urate \hints" to the greedy variable sele
tion algorithm, not thatthey ne
essarily make better leaves to a
tually use in the �nal tree.)Sin
e the stru
ture of the tree is �xed, we no longer have to hold out part of thetraining data for pruning or evaluating di�erent bran
h variables, so we allow it totrain the leaf distributions using all of the training data. Naturally, this by itself may
ause the relearned tree to be more a

urate, so we in
lude experiments in whi
h these
ond learning algorithm is identi
al to the �rst to
ontrol for this added a

ura
y.This type of leaf-relearning pro
edure was not used in any experiments outside thisse
tion, but it
ould have been used to slightly in
rease the a

ura
y of the resultingtrees.Joint vs. Strati�ed treesIn this series of experiments we verify the \soft bran
hing" hypothesis by
omparingthe a

ura
y of identi
ally stru
tured strati�ed
onditional density trees and jointdensity trees. While we're at it, we also examine the utility of re�tting density trees'distributions with all the training data on
e their stru
tures have been determined.We
ompare �ve di�erent density tree learning algorithms:� \Strati�ed Cond MLI (Relearn)": strati�ed
onditional density trees with leavesemploying multilinear interpolation. After the tree's stru
ture has been deter-mined, all the leaves are re�tted using all the training data.� \Strati�ed Joint MLI (Relearn)": Joint density trees with leaves employingmultilinear interpolation. Their stru
ture is restri
ted so that all bran
hing onthe parent variables o

urs before any bran
hing on the
hild variable. Theleaves are re�tted after the tree stru
ture is determined.167

� \Strati�ed Cond MLI to Joint": strati�ed
onditional density trees with leavesemploying multilinear interpolation are learned; then the trees are transformedinto joint density trees that are then used
onditionally as des
ribed in Se
-tion 4.5.2. In the pro
ess, all leaves are re�t with all the training data.� \Joint MLI (Relearn)": joint density trees with multilinearly interpolated leavesare learned, their leaves are re�tted, and then they are used
onditionally.� \Joint MLI (No Relearn)": joint density trees with multilinearly interpolatedleaves are learned and used
onditionally, but their leaves are not relearned on
ethe tree's stru
ture is �xed. (These results appear elsewhere in the thesis andare in
luded here again for
onvenien
e.)The network stru
ture used for the Bio dataset experiments was identi
al to thestru
ture used in Se
tion 4.8.2. The results are shown in Figures A.3 and A.4.On the datasets with the sharpest distributions (Squiggles, Bio .001 Unif, and Bio.001 Gaussian), \Two-level Cond MLI to Joint" signi�
antly outperformed \Two-levelCond MLI (Relearn)", despite the fa
t that the tree stru
tures and leaf distributionsused were identi
al. This
learly illustrates that \soft bran
hing" | that is, learningdistributions over the parent variables in the tree's leaves, and then employing these todetermine the likelihood with whi
h ea
h leaf generated the datapoint by using Bayes'srule |
an by itself somtimes lead to more a

urate density estimates than thoseobtained more straightforwardly from the
orresponding two-level
onditional trees.It leads to slightly worse performan
e than that of the identi
ally stru
tured two-level
onditional trees on the other problems. However, if the tree-learning algorithm isallowed to optimize the joint distribution rather than the
onditional distribution |as the \Two-level Joint MLI (Relearn)" algorithm does | then the \soft bran
hing"helps even more, and joint density trees perform better than two-level
onditionaldensity trees a
ross the board. If the \Two-level" restri
tion on the joint densitytree stru
ture is removed (\Joint MLI (Relearn)"), the improvement be
omes evengreater.Comparing \Joint MLI (Relearn)" with \Joint MLI (No Relearn)" reveals thatre�tting the tree leaves with the entire training dataset after the tree stru
ture is �xeddoes result in better density estimation, but the improvement is usually relativelysmall
ompared to the other di�eren
es between learning algorithms.168

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 9900 10400

Connected (synth)

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 11200 11600

Separate (synth)

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 3100 3450

Voronoi (synth)

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 13400 14200

Squiggles (synth)

Figure A.3: Supplemental experiments on joint vs. stratifed trees (syntheti
 datasets)
169

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 500

Test-Set Log-Likelihood

 80000 84000

Bio + .001 Unif noise

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 500

Test-Set Log-Likelihood

 73000 77500

Bio + .001 Gaussian noise

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 400

Test-Set Log-Likelihood

 44500 46100

Bio + .02 Gaussian noise

Figure A.4: Supplemental experiments on joint vs. stratifed trees (s
ienti�
 datasets)

170

Constant vs. non-
onstant leavesIn this se
tion we perform experiments in whi
h density trees are learned with uniformleaves, but after the trees' stru
tures are �xed, these leaves are repla
ed with multi-linearly interpolated leaves (\Joint Unif to MLI") �tted with the entire training set.We
ompare these with re�tted uniform-leaf density trees (\Joint Unif (Relearn)")and re�tted multilinear-leaf density trees (\Joint MLI (Relearn)"). The results areshown in Figure A.5.Repla
ing uniform-density leaves with multilinearly interpolated ones while hold-ing the tree stru
ture �xed signi�
antly improved a

ura
y on many datasets (andnever de
reased a

ura
y). Therefore, the improvement in a

ura
y a
quired by us-ing multilinearly interpolated leaves
annot be due entirely to the di�eren
es in treestru
ture. It is also worth noting that using
onstant-density leaves during the treestru
ture-learning pro
ess and then repla
ing them with multilinear ones is mu
h less
omputationally expensive than using multilinear leaves throughout the entire treestru
ture-learning pro
ess.A.3 E�e
t of the greedy network-learning algo-rithm's MAXCHANGES parameterIn this se
tion we illustrate the usefulness of setting the MAXCHANGES param-eter higher than 1, thus allowing the algorithm to employ \out-of-date" estimates forwhi
h possible ar
 additions and deletions are the most promising. We
ompare theperforman
e of the \Const!ML" algorithm used in Se
tion 4.8.5, whi
h has MAX-CHANGES set to 10, with a version that has MAXCHANGES set to 1. The resultsare shown in Figure A.6.While ea
h iteration of the greedy algorithm took slightly less time with MAX-CHANGES set to 1, it
learly improved the network stru
ture signi�
antly less periteration. In fa
t, it's not
lear from the learning
urves whether the learner withMAXCHANGES set to 1 will ever
onverge to networks as a

urate as those foundby the learner with MAXCHANGES set to 10 | somewhat surprising, sin
e onemight expe
t the algorithm employing \out-of-date" estimates for the utility of var-ious ar

hanges to get
aught in worse lo
al optima as a result. While this singleexperiment does not prove that using high values for MAXCHANGES will always171

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 25

Test-Set Log-Likelihood

 9800 10400

Connected (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 10

Test-Set Log-Likelihood

 11100 11600

Separate (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 10

Test-Set Log-Likelihood

 3150 3450

Voronoi (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 10

Test-Set Log-Likelihood

 12900 14200

Squiggles (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 76500 84000

Bio + .001 Unif noise

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 72000 77300

Bio + .001 Gaussian noise

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 44300 46100

Bio + .02 Gaussian noise

Figure A.5: Supplemental experiments on
onstant vs. multilinearly interpolatedleaves 172

70000

75000

80000

85000

90000

95000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Const->ML, MAXCHANGES=10
Const->ML, MAXCHANGES=1

Figure A.6: Performan
e of the greedy stru
ture-learning algorithm with MAX-CHANGES set to 10 vs. with MAXCHANGES set to 1.

173

help, it does suggest that it is not generally a bad idea to try.A.4 Diagnosti
 experiments on exponential-distribution density treesIn this se
tion we perform experiments that support our hypothesis for why den-sity trees with exponential-distribution leaves performed poorly on the Astro dataset(as shown in Se
tion 4.8.6): namely, that the trun
ated exponential distribution hasproperties that
ause it to intera
t poorly with the density tree learner's greedy vari-able sele
tion algorithm when the data is strongly
on
entrated near the side of the
urrent region's bounding box. We
ompare four density tree learning algorithms:� \Joint Exp Greedy (Relearn)": Exponential-leaf density trees learned with thegreedy variable sele
tion algorithm des
ribed in Se
tion 4.4.1; after the stru
turehas been �xed, the leaf distributions are re�tted with the entire training set.� \Joint Exp Grid (Relearn)": the same as \Joint Exp Greedy (Relearn)" ex-
ept the tree's bran
h variables are sele
ted using the \taking turns" approa
hdes
ribed in Se
tion 4.4.1.� \Joint Unif Grid (Relearn)": the same as \Joint Exp Greedy (Relearn)" ex
eptthe tree uses
onstant-density leaves rather than exponential ones.� \Joint Unif to Exp": the same as \Joint Unif Grid (Relearn)", ex
ept the
onstant-density leaves are repla
ed with exponential-density leaves after thetree's stru
ture has been learned using the greedy variable sele
tion me
hanismin
onjun
tion with
onstant-density leaves.Results of these four algorithms on two di�erent versions of the Astro dataset(namely, with uniform noise of magnitude .001 added, and with Gaussian noise witha standard deviation of .001 added) are shown in Figure A.7.The results show that when exponential leaves are used in
onjun
tion with thegreedy stru
ture-learning algorithm, performan
e is poor | signi�
antly worse thanusing
onstant-density leaves rather than exponential ones. However, if the \grid"bran
h variable method is employed, or if a
onstant-leaf density tree's leaves arerepla
ed with exponential leaves after the tree's stru
ture has been determined, thenperforman
e improves. The results in Se
tion A.1 indi
ate that greedy variable sele
-tion is signi�
antly better than the \grid" bran
h variable sele
tion me
hanism when174

Algorithm

Joint Exp Greedy (Relearn)

Joint Exp Grid (Relearn)

Joint Unif Greedy (Relearn)

Joint Unif to Exp

Test-Set Log-Likelihood

 3.275e+06 3.315e+06

Astro + .001 Uniform Noise

Algorithm

Joint Exp Greedy (Relearn)

Joint Exp Grid (Relearn)

Joint Unif Greedy (Relearn)

Joint Unif to Exp

Test-Set Log-Likelihood

 2.823e+06 2.866e+06

Astro + .001 Gaussian Noise

Figure A.7: Supplemental experiments on exponential-distribution density treesthe leaves are
onstant-density or multilinearly interpolated, so the problem is notgenerally attributable to the greedy variable sele
tion method itself.A.5 Preliminary experiments on using interpolat-ing density trees for
lassi�
ationThe work in this thesis on density trees has fo
used primarily on estimating
on-ditional distributions of
ontinuous variables. In this se
tion, we present the results ofsome preliminary experiments on using density tree-based algorithms for
lassi�
ation{ that is, for predi
ting the value of a dis
rete variable.The most dire
t approa
h to using density trees for
lassi�
ation is to simply learna single density tree over the dis
rete output variable and some set of input variables.As dis
ussed in Se
tion 4.5.1, when the output variable is dis
rete and the type oftree used is a strati�ed
onditional density tree, then the
lassi�er is identi
al in formto the de
ision trees that have frequently been used in the past. However, none of thetree-learning algorithms des
ribed in this thesis have used any spe
ial-purpose meth-ods to improve the performan
e of the trees on
lassi�
ation tasks, whereas
lassi
al175

de
ision-tree learning algorithms (e.g. ID3 [Qui86℄ and CART [BFOS84℄) have bran
hthreshold sele
tion methods and pruning methods spe
i�
ally designed for
lassi�
a-tion. Thus, one might expe
t these spe
ial-purpose de
ision-tree learning algorithmsto generally perform better at
lassi�
ation than the density trees developed in thisthesis.First, we
ompare the
lassi�
ation performan
e of joint density trees using mul-tilinear interpolation within the leaves versus the performan
e of J48, an implemen-tation of the C4.5 [Qui93℄ de
ision-tree learning algorithm publi
ally available in theWeka ma
hine learning library [FHT+02℄. Sin
e joint density trees
an only be ef-fe
tively learned when the number of input variables is relatively small, we use aversion of the greedy Bayesian network-learning algorithm des
ribed in Figure 4.12to perform feature sele
tion. Namely, the MAXCHANGES parameter is set to 1; onlyar
s dire
tly from the input variables to the output variable are
onsidered; and thegreedy algorithm is applied iteratively for �ve iterations, with the starting networkfor ea
h iteration being the �nal network of the last. This e�e
tively implements abest-�rst forward feature sele
tion algorithm.Figure A.8 shows the
lassi�
ation a

ura
y of the resulting trees on one of thedis
rete variables (\TNF") in the Bio dataset, with various forms and magnitudes ofnoise added to the
ontinuous input variables. We show the mean
lassi�
ation a

u-ra
y in a ten-fold
ross-validation, as well as its empiri
ally estimated 95%
on�den
einterval. The
orresponding results are also shown for J48, both with and without asimilar best-�rst forward feature sele
tion algorithm employed. (Note, however, thatbe
ause feature sele
tion with J48 was rather slow, we let J48 \
heat" by using theentire dataset for feature sele
tion, rather than have it perform feature sele
tion on
efor ea
h of the ten
ross-validation splits.)All the learners a
hieved very high a

ura
y on this problem when little or no noisewas present; the variable appears to be a determininsti
 fun
tion (or nearly so) of oneor two other variables in the domain. The joint density trees performed signi�
antlybetter at predi
ting the target variable than J48 did in the two
ases where noise waspresent in small amounts. However, they performed signi�
antly worse in the
aseswhere no noise was present or when high amounts of noise were present. Examinationof the \Bio + .02 Gaussian noise"
ase revealed that performan
e of joint density treeswas poor primarily be
ause the feature sele
tion algorithm
hose poor feature sets ina few of the
ross-validation splits; manually �xing the input features to a set of four176

Algorithm

J48

J48 w/feature selection

Joint MLI density trees

Classification accuracy

 0.995 1

Bio w.o./Noise, TNF

Algorithm

J48

J48 w/feature selection

Joint MLI density trees

Classification accuracy

 0.99 1

Bio + .001 Unif noise, TNF

Algorithm

J48

J48 w/feature selection

Joint MLI density tree

Classification accuracy

 0.985 1

Bio + .001 Gaussian noise, TNF

Algorithm

J48

J48 w/feature selection

Joint MLI density trees

Classification accuracy

 0.65 0.85

Bio + .02 Gaussian noise, TNF

Figure A.8: Classi�
ation a

ura
y
omparisons of J48 vs. joint multilinear densitytrees for the \TNF" variable in the Bio dataset, given di�erent amounts and types ofnoise on the input variables.
177

\good" inputs allowed the joint density trees to perform better than J48 withoutfeature sele
tion, although still not as good as J48 with feature sele
tion.Figure A.9 shows the
lassi�
ation a

ura
y of joint multilinear density trees ver-sus J48 on one of the dis
rete variables (\Type") in the Astro dataset. Featuresele
tion with J48 was extremely slow | we aborted it after over 10 hours of CPUtime | so we �xed the inputs to three features that had been sele
ted by the Bayesiannetwork-stru
ture learning algorithm using joint multilinear density trees. Thus, theresults for \J48, 3 input vars" in Figure A.9 should be
onsidered only a lower boundon how well J48 would have performed with proper feature sele
tion. (We also showthe results for J48 with no feature sele
tion; these results are signi�
antly worse thanwith the manually sele
ted features.) For
onsisten
y, we also �x the input featureset of the joint multilinear density trees to these three features.Joint multilinear density trees had roughly the same a

ura
y as J48 in the \Astro+ .001 Gaussian noise"
ase, but were signi�
antly worse in the other two
ases.Notably, the
lassi�
ation a

ura
y of joint multilinear density trees in the
ase whereno noise had been added to the dataset was a
tually worse than the
ases where smallamounts of noise had been added. This suggests that the joint density trees may havebeen spending too mu
h of their representational power modeling sharp peaks in thedistributions of the input variables.A se
ond possible approa
h to using density trees for
lassi�
ation is to use themin Bayesian networks in whi
h ar
s go from the target variable to the input variables,rather than the other way around as in the previously dis
ussed approa
h. When noother ar
s are present, the Bayesian network e�e
tively implements a Naive Bayes
lassi�er. Further ar
s between the input variables
an be added to model importantdependen
ies between them, as in TAN
lassi�ers [FGG97℄. We might expe
t thisse
ond approa
h to be more a

urate than the �rst in
ases where the target variableis better modelled as a noisy fun
tion of many input variables, rather than a near-deterministi
 fun
tion of a few inputs.Figure A.10 shows the results of some preliminary experiments on using TAN-likenetworks with joint density trees for
lassi�
ation. The Bayesian network-learningalgorithm employed is a modi�
ation of the greedy network-learning algorithm de-s
ribed in Figure 4.12 that evaluates
andidate ar
 removals and additions based ontheir in
uen
e on the total
onditional log-likelihood of the output variables giventhe input variables, as evaluated over a holdout set. A forward feature sele
tion algo-178

Algorithm

J48

J48, 3 input vars

Joint MLI, 3 input vars

Classification accuracy

 0.85 0.88

Astro w.o./Noise, Type

Algorithm

J48

J48, 3 input vars

Joint MLI, 3 input vars

Classification accuracy

 0.86 0.875

Astro + .001 Unif noise, Type

Algorithm

J48, 3 input vars

Joint MLI, 3 input vars

Joint MLI TAN-like net

Classification accuracy

 0.79 0.87

Astro + .001 Gaussian noise, Type

Figure A.9: Classi�
ation a

ura
y
omparisons of J48 vs. joint multilinear densitytrees for the \Type" variable in the Astro dataset, given di�erent amounts and typesof noise on the input variables.

179

Algorithm

J48 w/feature selection

Joint MLI density trees

Naive Bayes w/feat. sel.

Joint MLI TAN-like net

Classification accuracy

 0.65 0.85

Bio + .02 Gaussian noise, TNF

Algorithm

J48, 3 input vars

Joint MLI, 3 input vars

Naive Bayes w/feat. sel.

Joint MLI TAN-like net

Classification accuracy

 0.79 0.87

Astro + .001 Gaussian noise, Type

Figure A.10: Classi�
ation a

ura
y of TAN-like networks with joint multilinear den-sity trees versus other
lassi�ers.rithm is used to initialize the network with a set of ar
s from the target variable to alimited number of input variables; then, the modi�ed greedy stru
ture-learning algo-rithm is run for three iterations, with MAXPARENTS set to 3 and MAXCHANGESset to 1. In the
ase of the \Astro + .001 Gaussian Noise" dataset, the data wasdis
retized during the network stru
ture sear
h; on
e the stru
ture was learned, thenetwork was reparameterized with joint density trees employing multilinear interpo-lation in the leaves. (Using su
h trees during the a
tual sear
h would have been too
omputationally expensive on this dataset.)In addition to the results for the TAN-like networks and the previous results forsingle density trees and de
ision trees, we provide results from Weka's implementa-tion of a Naive Bayes
lassi�er using best-�rst forward feature sele
tion. This NaiveBayes implementation dis
retizes the
ontinuous input variables a

ording to a Min-imum Des
ription Length prin
iple that takes the parti
ular
lassi�
ation task intoa

ount [FI93℄, unlike the approa
hes explored in this thesis.On the \Bio + .02 Gaussian Noise" task, the TAN-like network performed sig-ni�
antly better than the other
lassi�ers; however, on the \Astro + .001 GaussianNoise" task, it performed signi�
antly worse than J48 and the single joint mulitlinear180

density tree. It is worth noting, however, that it performed signi�
antly better thanNaive Bayes in both
ases. Naive Bayes performs better than de
ision trees do onmany kinds of
lassi�
ation tasks (although
learly not on the tasks examined so farin this appendix); the TAN-like networks brie
y explored here may be more usefulon su
h problems. Further experimentation along su
h lines might be useful.

181

