Bayesian Networks for Lossless Dataset Compression

Scott Davies
Carnegie Mellon University
scottd@cs.cmu.edu

Abstract

The recent explosion in research on probabilistic data
mining algorithms such as Bayesian networks has been
focussed primarily on their use in diagnostics, prediction
and efficient inference. In this paper, we examine the
use of Bayesian networks for a different purpose: lossless
compression of large datasets. We present algorithms
for automatically learning Bayesian networks and new
structures called “Huffman networks” that model statistical
relationships in the datasets, and algorithms for using these
models to then compress the datasets. These algorithms
often achieve significantly better compression ratios than
achieved with common dictionary-based algorithms such
those used by programs like ZIP.

1 Introduction

It has long been understood that even when confronted
with a ten-gigabyte file containing data to be statisti-
cally analyzed, the actual information-theoretic amount
of information in the file might be much less, per-
haps merely a few hundred megabytes. This insight
i1s currently most commonly used by data analysts to
take high-dimensional real-valued datasets and reduce
their dimensionality using principal components analy-
sis, with little loss of meaningful information. This can
turn an apparently intractably large data mining prob-
lem into an easy problem. PCA is applicable to real-
valued data, and is usually a lossy form of compression:
some information is lost in the transformation.

This paper is about dealing with large datasets with
categorical (i.e. symbolic) values, and about using
Bayesian network learning to discover interrelationships
that allow very aggressive compression of the data. Fur-
thermore, this compression can be completely lossless.

Andrew Moore
Carnegie Mellon University
awm@cs.cmu.edu

The paper begins with an abridged overview of the rel-
evant parts of compression and Bayesian network tech-
nology. We then discuss how to learn Bayesian networks
that are useful for compression and how we use them
with arithmetic coding and Huffman coding.

2 Background: Compression

Dictionary Techniques

Perhaps the most commonly used class of compression
algorithms is the set of “dictionary techniques” used
in general-purpose compression programs such as gzip.
Dictionary-based algorithms maintain dictionaries con-
taining sequences of source symbols. Whenever the
source contains a symbol sequence that appears in the
dictionary, that sequence’s position in the dictionary
1s encoded rather than the individual symbols them-
selves. An example of a dictionary-based algorithm is
the LZ77 algorithm [18] (employed by gzip), which uses
a sliding window of previously encoded symbols as its
dictionary. These algorithms can be shown to achieve
asympotically optimal compression rates [17]; however,
they may require the use of unmanageably large dictio-
naries in order to do so.

Huffiman Coding

Given a small discrete set of source symbols and
their associated probabilities, a simple greedy algorithm
developed by David Huffman [7] can be used to find an
optimal code with which to encode these source symbols
on an individual basis. However, if the probability for
one particular source symbol is very high (theoretically
only needing a fraction of a bit), Huffman coding can
be inefficient, as the code requires at least one bit for
each source symbol encoded.

Arithmetic Coding

Arithmetic coding (developed by Rissanen [13] and
Pasco [11]; see Witten, Neal, and Cleary [16] for a
tutorial) allows sequences of symbols to be encoded
nearly optimally (in the limit as & increases) without
requiring the enumeration of all possible source code
sequences of length k. Arithmetic coding effectively
maps an entire sequence of source symbols to a real

number between 0 and 1. The arithmetic encoder
begins with a range R = [0,1). As each symbol in
the source sequence is encoded, the current range R
is subdivided into a partitions, where a is the number
of possible values the symbol could have taken on;
the size of each of these partitions is proportional to
the probability of symbol taking on the corresponding
value. The current range is then restricted to the
partition corresponding to the source symbol being
encoded. Once all symbols have been processed in this
manner, the encoder outputs the binary representation
of a number within the final subrange, to a sufficient
precision to disambiguate the number from all numbers
outside of this subrange.

Arithmetic coding achieves asymptotically optimal
compression performance as the number of symbols in
the encoded block tends to infinity, assuming that the
model probability distributions used for encoding per-
fectly reflect the probability distributions inherent in
the data. As described above, arithmetic coding ap-
pears to require the use of arbitrary-precision arithmetic
operations in order to manipulate the current range R;
However, it is possible to use limited-precision integer
arithmetic to approximate “perfect” arithmetic coding
with only a small loss in compression performance.

Both Huffman encoding and arithmetic coding re-
quire probabilistic models of the data they encode. We
now discuss a class of probabilistic models particularly
well-suited for modelling probability distributions over
categorical datasets.

3 Background: Bayesian networks

Suppose we have a dataset D in which each record
Ii, ..., I consists of a set of values assigned to a set of
variables X1, ..., X,,. Now suppose we wish to model D
with a probability distribution P(X1, Xa,..., X,,) that
we may use to calculate the probability that a randomly
selected record I from D will have any specific value v
assigned to Xj, any specific value vy assigned to Xo,
and so forth. Naturally, the most accurate “model” of
D would be an enormous lookup table specifying how
many records in D have any given set of assignments of
values to X through X ; however, such a model would
typically be useless for compression, since it would
usually require as much space as D itself. What kinds
of probabilistic models might be useful for compression?

Bayesian networks [12], also commonly known as
belief networks, are a popular class of probabilistic
models that work well in conjunction with compression,
although they are primarily used for data analysis
and decision-making. A Bayesian network consists of
a directed acyclic graph (or “DAG”) in which each
vertex corresponds to a variable, plus a probability
distribution P(X;|IIx,) for each variable X;, where I x,
is the set of X/s parents in the DAG. Given such

a Bayesian network, the joint probability distribution
over all variables X,..., X, 1s then calculated as

P(X1,..., X,) = ﬁP(XZ» | Ix,).

i=1

3.1 Learning Bayesian networks

Given a dataset D, we would like to automatically
learn a Bayesian network B that accurately models
the probability distributions in D with a small number
of network parameters (i.e., entries in the probability
tables associated with the variables). If there are
no missing values or hidden variables in D — that
1s, if the data is “complete” — then if we are given
B’s structure, it is trivial to fill in B’s probability
tables optimally: namely, we simply use the empirical
distributions appearing in D. However, even with
complete data, the problem of finding the best network
structure is NP-hard [2]. Learning a Bayesian network
is thus typically done by using a search procedure to
find a network B that maximizes (or at least hopefully
comes close to maximizing) a scoring function C'(B, D).
A popular scoring function is the Bayesian Information

Criterion (BIC) [15],
C(B, D) = log P(D | B) — |B| + 0.5log k

where |B] is the number of parameters (probabilities)
stored in the net and % 1s the number of records in the
dataset.

4 Using Bayesian networks with
arithmetic coding

Maximizing BIC corresponds directly to minimizing the
number of bits required to store both (1) the parameters
of the network B to a reasonable level of precision and
(2) an efficient encoding (such as arithmetic encoding)
of D using the probability distribution entailed by
B. Thus, the BIC is naturally suited for finding
Bayesian networks that are good for compression. This
“minimum description length” (or MDL) approach
has also been used for learning Bayesian networks in
cases where compression is not necessarily the primary
objective [8].

Bayesian networks are straightforward to use with
arithmetic coding. To encode a record I of the dataset
with a Bayesian network B, one treats each of the
values in [as an individual “source symbol”. These
values are passed to the arithmetic encoder in an order
consistent with a topological sort of B’s vertices. This
way, the decoder will have already decoded the values
of any given variable X;’s parent variables by the time
it needs to decode the value of X;, and can use the
appropriate entry in X;’s probability table to determine
the probability distribution of values for X;.

For the experimental results in this section, we use
two algorithms for learning Bayesian networks. The
first algorithm uses a form of stochastic hillclimbing
over possible network structures using the Bayesian
Information Criterion as its scoring function. AD-
Trees [10] are used to speed up this search by decreasing
the amount of time necessary to calculate the dataset
statistics required for the search.

The second algorithm takes two sweeps through the
dataset. In the first sweep, the mutual information
between all pairs of variables is computed. Using
this information, as well as BIC-like penalty terms
for the number of parameters required, the algorithm
uses a greedy heuristic algorithm to add arcs to
the empty Bayesian network in order to arrive at a
network in which each node has at most ¢ parents.
A second sweep is then made over the dataset to
fill in the probability tables of the resulting network.
See [4] for further details. This algorithm is somewhat
similar to an algorithm previously used by Sahami for
classification [14]. In the special case where ¢ is 1, this
algorithm reduces to a penalized version of Chow and
Liu’s dependency-tree algorithm [3], and is provably
optimal. While the network chosen by this greedy
algorithm won’t generally be as accurate as one found
via a more thorough search, this algorithm has the
advantage of being more computationally feasible on
datasets with many records or attributes.

4.1 Data reordering and Dynamic Bayesian

networks

In applications in which we will only wish to scan
through the dataset sequentially, we can take advantage
of potential correlations between the ¢th record and
t + 1th record to obtain further compression. We
use Dynamic Bayesian Networks [5] to seek out and
learn such correlations and exploit them in a tighter
encoding. These networks are learned with a greedy
algorithm similar to the greedy Bayesian network-
learning algorithm described in the previous section.
Even more aggressive compression can be obtained
when we are performing a data mining task that is
indifferent to the order in which records are presented.
In that case we can deliberately pre-sort the records
to induce inter-record correlations where none existed
originally and save even more space. Again, see [4] for
further details.

4.2

In this section, we examine the effectiveness of learning
Bayesian networks in order to perform compression with
arithmetic coding on real datasets. In conjunction with
the Bayesian network learning algorithms discussed
above; we used a limited-precision arithmetic coding
library written by Carpinelli et al. [1] based on a paper
by Moffat et al. [9].

Experimental Results

We compare the compression performance of arith-
metic coding with Bayesian networks (using the best
of the two algorithms described above) and Dynamic
Bayesian networks with the performance of gzip and
bzip2, two popular compression utilities, on four
datasets. Each dataset is compressed both in its nat-
ural ordering and in an order in which the items have
been lexigraphically sorted. (See [4] for details.)

| || Census | Banking | Astrol | Astro2 |
dataset items 142500 6370 900000 3.08 M
variables 12 142 27 49
variable arity 2-12 2-100 2-16 2-16
Uncomp. binary 536 KB 416 KB 11.8 MB | 53.1 MB
gzip 294 KB 345 KB 6.9 MB 35.6 MB
bzip2 220 KB | 273 KB 5.6 MB 27.9 MB
Bayes Net 169 KB 166 KB 4.2 MB 23.9 MB
Dyn. Bayes Net 171 KB 166 KB 2.6 MB 16.1 MB
Sort 4+ gzip 36 KB 343 KB 6.5 MB 34.0 MB
Sort + bzip2 58 KB 272 KB 5.5 MB 27.7 MB
Sort + Dyn. BN 19 KB 163 KB 2.5 MB 17.1 MB

Depending on which dataset is being compressed
and whether this dataset has been sorted, compression
using Dynamic Bayesian networks in conjunction with
arithmetic encoding was able to produce files that
were 40-60% smaller than produced by gzip, and 20-
60% smaller than produced by bzip2. Sorting the
datasets sometimes increased compression performance
— dramatically so in the case of the Census dataset.

5 Huffman networks

The arithmetic coding-based algorithms described above
provide excellent compression ratios. However, arith-
metic coding is somewhat computationally expensive;
also, random access is impossible within a sequence of
bits encoded with a single application of arithmetic cod-
ing, since there is no well-defined bit position where the
encoding of one variable ends and another begins.

In contrast, Huffman coding uses relatively inexpen-
sive lookup operations to perform encoding and decod-
ing, and each coded value naturally has a well-defined
start and end position in the resulting bitstream. This
makes Huffman-based coding attractive for applications
requiring faster decompression and/or random access.
However, as mentioned previously, Huffman-based de-
coding provides poor compression performance when
applied to probability distributions in which some val-
ues are very probable. It is possible to group variables
together to overcome this problem, but then the ta-
bles required for encoding and decoding can become
prohibitively large if too many variables are placed in
one group. Additionally, if one variable is highly cor-
related with many other variables, it may help to have
the value of that variable change the coding schemes
associated with several variable groups, without that
variable’s value actually being coded in the compressed
representations of all of the groups i1t influences.

We address these issues by using a hybrid Bayesian
network — referred to hereafter as a Huffman network
for convenience — in which each node actually models
a group of variables in the dataset rather than an
individual variable. Each group of variables is Huffman
coded as a single unit. For example, if a group contains
three binary variables, then that group is Huffman
coded as if it were a single variable taking on eight
possible values; each of these eight values 1s assigned
a probability equal to the joint probability of the
corresponding combination of values for the original
three binary variables.

In order to take into consideration dependencies
between variables residing in different groups, we allow
the probability distribution over the possible values
for each group to be conditioned on the values of
other variables. For example, in Figure 1A, six
variables have been placed into three groups. The joint
probability distribution of all the variables in Group
3 (namely, variables 25 and x¢) is conditioned on the
values of variables z3, 24, and x5. This conditioning is
represented in the graph by arcs from 3,24, and x5
to Group 3. Assuming all the variables are binary, this
means that Group 3 requires eight Huffman trees — one
for each possible combination of values to x3, x4 and xs.
Each of these trees then has four leaves — one for each
possible combination of x5 and xg. Note, however, that
Group 3 is not conditioned on the value of #1, despite
the fact that x; is in the same group as x4 and z5. This
added flexibility can help in certain situtations — for
example, if 2 and zg are independent of z; given x4
and x5, then conditioning Group 3 on the value of x;
would double the number of Huffmann trees required by
Group 3 without increasing Group 3’s coding efficiency.

The Huffman network can be thought of as a
Bayesian network over the original variables in which all
variables in the same group are completely connected
(e.g., Figure 1B). This representation tells us what
dependencies between variables are being modelled
by the coding scheme associated with the Huffman
network. At the same time, the Huffman network can
be thought of as a Bayesian network over the groups
themselves (e.g., Figure 1C), where an arc exists from
group (G to group G’ if and only if an arc exists from at
least one variable in G to the group G’ in the Huffman
network. This view summarizes how the coding groups
in the Huffman network are connected, thus telling us
which groups of variables need to be decoded before
other groups can be decoded.

We use a given Huffman network to perform com-
pression as follows. First, we take one pass through
the dataset to compute contingency tables for each
of the groups in the network. The contingency ta-
ble for a given group with a set of variables V and
set of conditioning variables P counts how many times

each possible combination of values for V|J P occurs
in the dataset. These contingency tables are repre-
sented sparsely so that combinations that never actually
occur in the dataset are never explicitly represented.
Once these these contingency tables are computed, they
are transformed into Huffman trees (which can subse-
quently be transformed into tables for encoding pur-
poses). When compressing a file, we encode the Huff-
man trees at the beginning of the file (we omit the de-
tails), and then encode all of the records. Each record
is encoded group by group in an order consistent with
a topological sort of the groups in the network. Decom-
pression is performed in an analogous manner.

5.1 Learning Huffman networks

The problem of automatically finding effective Huffman
networks to use for compression is very similar to the
problem of finding maximum-BIC Bayesian networks,
and 1s almost certainly at least as difficult. Therefore,
as 1n the case of learning Bayesian networks, we must
rely on heuristic search techniques. We have not yet ex-
tensively explored possible search algorithms for finding
good Huffman networks; however, we have implemented
a relatively simple multiple-start stochastic hillclimbing
algorithm. At each step during a hillclimbing run, the
search algorithm considers adding an arc from a ran-
domly selected variable to a randomly selected group
(or removing the arc if one already exists), or moving a
variable from its current group to a randomly selected
group. If the change under consideration would cre-
ate a cycle in the Huffman network, then it is immedi-
ately rejected and another change is randomly consid-
ered. Otherwise, the algorithm evaluates the resulting
network and compares its estimated compression per-
formance to the estimated compression performance of
the current working network. A good network mini-
mizes the total number of bits required to: (1) encode
the network itself, and (2) encode the data with the net-
work. Both of these terms can be estimated accurately
from the Huffman trees associated with the group nodes
if we have computed them.

5.2 Experimental Results

We use multiple-restart hillclimbing over Huffman
networks in order to find good coding networks for
the three datasets previously examined. Once the
algorithm settled on a “good” network, we measured the
network’s performance both in terms of compressed file
size and in terms of how fast they were able to perform
decompression on encoded representations of the data
in memory. Speed is measured in terms of the number
of bits of uncompressed data that can be decoded per
second on a 450 MHz Pentium II.

|| Arithmetic coding | Huffman network coding |

Census 169 KB, 0.54 MB/sec 171 KB, 1.9 MB/sec
Banking 166 KB, 0.49 MB/sec 179 KB, 1.1 MB/sec
Astrol 4.2 MB, 0.50 MB/sec 4.3 MB, 2.2 MB/sec
Astro2 23.9 MB, 0.31 MB/sec 24.1 MB, 1.3 MB/sec

A

Grgyp 2

o | o e

Figure 1: An example Huffman network (A), along with its corresponding variable-based (B) and group-based (C)

Bayesian networks

As one might expect, the Huffman-based coding
performed slightly (1 to 8%) worse than arithmetic
coding in terms of file size, since arithmetic coding
does not have to output integral numbers of bits
for individual variables or groups of variables as the
Huffman-based coding does. However, the Huffman-
based decoding was two to four times faster than
arithmetic decoding, and still achieved significantly
smaller files than those achieved by the dictionary-based
approaches (see section 4). While this is still much
slower than the decoding speed of gzip and bzip2,
there are further optimizations to be performed that
will be examined in [4].

6 Concluding remarks

Related Work

Automatically-learned Bayesian networks have been
used previously in conjunction with arithmetic encoding
in recent research by Brendan Frey [6]. Rather than
learning the structure of the Bayesian network, Frey
uses a fixed network structure in which each node
has many parents; the probability of each node given
its parents is paramaterized using logistic regression.
This approach has disadvantages compared to the
approaches we describe here, although it has some
advantages as well. In particular, Frey’s approach
may be more difficult to apply to nonbinary datasets.
Additionally, Frey’s use of hidden variables necessitates
the use of a complex “bits-back” coding scheme in order
to achieve decent compression rates, and this scheme
may prevent fine-grained random access to the data.
Comparisons with Frey’s approach will be performed in
future research.

Conclusion

This paper has proposed that Bayesian networks, in
addition to their other virtues, may be an important
tool for dataset compression. Experimental results
show that excellent compression ratios are obtainable
with arithmetic coding in conjunction with Bayesian
networks. The Huffman networks introduced here
provide nearly the same compression ratios, but with
significantly less computational time.

References
[1] J. Carpinelli, A. Moffat, R. Neal, W. Salamonsen, L. Stuiver,

(10]

(11]
(12]

(13]

(14]

15]

(16]

(17]

18]

and I. Witten. Word, Character, and Bit Based Compres-
ston Using Arithmetic Coding. Available for download at
ftp://munnari.oz.au/pub/arith.coder/, 1995.

D. Chickering. Learning Bayesian networks is NP-complete.
In Learning from Data, pages 121-130. Springer-Verlag,
1996.

C. K. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees. [IEEE
Transactions on Information Theory, IT-14:462-467, 1968.

S. Davies and A. Moore. Bayesian Networks for Lossless
Dataset Compression. Technical Report in Progress, CMU
School of Computer Science, 1999.

T. Dean and K. Kanazawa. Probabilistic temporal reasoning.
In AAAI-88 Proceedings, pages 524-528, 1988.

B. J. Frey. Graphical Models for Machine Learning and
Digital Communication. MIT Press, 1998.

D. A. Huffman. A Method for the Construction of Minimum
Redundancy Codes. In Proceedings of the IRE, volume 40,
pages 1098-1101, 1951.

W. Lam and F. Bacchus. Learning Bayesian belief networks:
an approach based on the MDL principle. Computational
Intelligence, 10:269-293, 1994.

A. Moffat, R. Neal, and I. H. Witten. Arithmetic Coding
Revisited. In Proceedings of the IEEE Data Compression
Conference, March 1995.

A. W. Moore and M. S. Lee. Cached Sufficient Statistics for
Efficient Machine Learning with Large Datasets. Journal of
Artificial Intelligence Research, 8, 1998.

R. Pasco. Source Coding Algorithms for Fast Data
Compression. Ph.D. Thesis, Stanford University, 1976.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan-Kaufmann, 1988.

J. J. Rissanen. Generalized Kraft inequality and arithmetic
coding. IBM Journal of Research and Development, 20:198—
203, May 1976.

M. Sahami. Learning Limited Dependence Bayesian Clas-
sifiers. In KDD-96: Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 335—338. AAAT Press, 1996.

G. Schwarz. Estimating the dimension of a model. Annals
of Statistics, 6:461-464, 1978.

I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. Communications of the
Association for Computing Machinery, 30:520-540, June
1987.

J. Ziv. Coding theorems for individual sequences. [EFE
Transactions on Information Theory, 24:389-394, 1978.

J. Ziv and A. Lempel. A Universal Algorithm for Data
Compression. IEEE Transactions on Information Theory,
23(3):337-343, May 1977.

