
Bayesian Networks for Lossless Dataset CompressionScott DaviesCarnegie Mellon Universityscottd@cs.cmu.edu Andrew MooreCarnegie Mellon Universityawm@cs.cmu.eduAbstractThe recent explosion in research on probabilistic datamining algorithms such as Bayesian networks has beenfocussed primarily on their use in diagnostics, predictionand e�cient inference. In this paper, we examine theuse of Bayesian networks for a di�erent purpose: losslesscompression of large datasets. We present algorithmsfor automatically learning Bayesian networks and newstructures called \Hu�man networks" that model statisticalrelationships in the datasets, and algorithms for using thesemodels to then compress the datasets. These algorithmsoften achieve signi�cantly better compression ratios thanachieved with common dictionary-based algorithms suchthose used by programs like ZIP.1 IntroductionIt has long been understood that even when confrontedwith a ten-gigabyte �le containing data to be statisti-cally analyzed, the actual information-theoretic amountof information in the �le might be much less, per-haps merely a few hundred megabytes. This insightis currently most commonly used by data analysts totake high-dimensional real-valued datasets and reducetheir dimensionality using principal components analy-sis, with little loss of meaningful information. This canturn an apparently intractably large data mining prob-lem into an easy problem. PCA is applicable to real-valued data, and is usually a lossy form of compression:some information is lost in the transformation.This paper is about dealing with large datasets withcategorical (i.e. symbolic) values, and about usingBayesian network learning to discover interrelationshipsthat allow very aggressive compression of the data. Fur-thermore, this compression can be completely lossless.

The paper begins with an abridged overview of the rel-evant parts of compression and Bayesian network tech-nology. We then discuss how to learn Bayesian networksthat are useful for compression and how we use themwith arithmetic coding and Hu�man coding.2 Background: CompressionDictionary TechniquesPerhaps the most commonly used class of compressionalgorithms is the set of \dictionary techniques" usedin general-purpose compression programs such as gzip.Dictionary-based algorithms maintain dictionaries con-taining sequences of source symbols. Whenever thesource contains a symbol sequence that appears in thedictionary, that sequence's position in the dictionaryis encoded rather than the individual symbols them-selves. An example of a dictionary-based algorithm isthe LZ77 algorithm [18] (employed by gzip), which usesa sliding window of previously encoded symbols as itsdictionary. These algorithms can be shown to achieveasympotically optimal compression rates [17]; however,they may require the use of unmanageably large dictio-naries in order to do so.Hu�man CodingGiven a small discrete set of source symbols andtheir associated probabilities, a simple greedy algorithmdeveloped by David Hu�man [7] can be used to �nd anoptimal code with which to encode these source symbolson an individual basis. However, if the probability forone particular source symbol is very high (theoreticallyonly needing a fraction of a bit), Hu�man coding canbe ine�cient, as the code requires at least one bit foreach source symbol encoded.Arithmetic CodingArithmetic coding (developed by Rissanen [13] andPasco [11]; see Witten, Neal, and Cleary [16] for atutorial) allows sequences of symbols to be encodednearly optimally (in the limit as k increases) withoutrequiring the enumeration of all possible source codesequences of length k. Arithmetic coding e�ectivelymaps an entire sequence of source symbols to a real 1



number between 0 and 1. The arithmetic encoderbegins with a range R = [0; 1). As each symbol inthe source sequence is encoded, the current range Ris subdivided into a partitions, where a is the numberof possible values the symbol could have taken on;the size of each of these partitions is proportional tothe probability of symbol taking on the correspondingvalue. The current range is then restricted to thepartition corresponding to the source symbol beingencoded. Once all symbols have been processed in thismanner, the encoder outputs the binary representationof a number within the �nal subrange, to a su�cientprecision to disambiguate the number from all numbersoutside of this subrange.Arithmetic coding achieves asymptotically optimalcompression performance as the number of symbols inthe encoded block tends to in�nity, assuming that themodel probability distributions used for encoding per-fectly re
ect the probability distributions inherent inthe data. As described above, arithmetic coding ap-pears to require the use of arbitrary-precision arithmeticoperations in order to manipulate the current range R;However, it is possible to use limited-precision integerarithmetic to approximate \perfect" arithmetic codingwith only a small loss in compression performance.Both Hu�man encoding and arithmetic coding re-quire probabilistic models of the data they encode. Wenow discuss a class of probabilistic models particularlywell-suited for modelling probability distributions overcategorical datasets.3 Background: Bayesian networksSuppose we have a dataset D in which each recordI1; : : : ; Ik consists of a set of values assigned to a set ofvariablesX1; : : : ; Xn. Now suppose we wish to modelDwith a probability distribution P (X1; X2; : : : ; Xn) thatwe may use to calculate the probability that a randomlyselected record I from D will have any speci�c value v1assigned to X1, any speci�c value v2 assigned to X2,and so forth. Naturally, the most accurate \model" ofD would be an enormous lookup table specifying howmany records in D have any given set of assignments ofvalues to X1 through XN ; however, such a model wouldtypically be useless for compression, since it wouldusually require as much space as D itself. What kindsof probabilistic models might be useful for compression?Bayesian networks [12], also commonly known asbelief networks, are a popular class of probabilisticmodels that work well in conjunction with compression,although they are primarily used for data analysisand decision-making. A Bayesian network consists ofa directed acyclic graph (or \DAG") in which eachvertex corresponds to a variable, plus a probabilitydistribution P (Xij�Xi) for each variableXi, where �Xiis the set of X0is parents in the DAG. Given such

a Bayesian network, the joint probability distributionover all variables X1; : : : ; Xn is then calculated asP (X1; : : : ; Xn) = nYi=1P (Xi j �Xi):3.1 Learning Bayesian networksGiven a dataset D, we would like to automaticallylearn a Bayesian network B that accurately modelsthe probability distributions in D with a small numberof network parameters (i.e., entries in the probabilitytables associated with the variables). If there areno missing values or hidden variables in D | thatis, if the data is \complete" | then if we are givenB's structure, it is trivial to �ll in B's probabilitytables optimally: namely, we simply use the empiricaldistributions appearing in D. However, even withcomplete data, the problem of �nding the best networkstructure is NP-hard [2]. Learning a Bayesian networkis thus typically done by using a search procedure to�nd a network B that maximizes (or at least hopefullycomes close to maximizing) a scoring function C(B;D).A popular scoring function is the Bayesian InformationCriterion (BIC) [15],C(B;D) = logP (D j B) � jBj � 0:5 logkwhere jBj is the number of parameters (probabilities)stored in the net and k is the number of records in thedataset.4 Using Bayesian networks witharithmetic codingMaximizing BIC corresponds directly to minimizing thenumber of bits required to store both (1) the parametersof the network B to a reasonable level of precision and(2) an e�cient encoding (such as arithmetic encoding)of D using the probability distribution entailed byB. Thus, the BIC is naturally suited for �ndingBayesian networks that are good for compression. This\minimum description length" (or MDL) approachhas also been used for learning Bayesian networks incases where compression is not necessarily the primaryobjective [8].Bayesian networks are straightforward to use witharithmetic coding. To encode a record I of the datasetwith a Bayesian network B, one treats each of thevalues in I as an individual \source symbol". Thesevalues are passed to the arithmetic encoder in an orderconsistent with a topological sort of B's vertices. Thisway, the decoder will have already decoded the valuesof any given variable Xi's parent variables by the timeit needs to decode the value of Xi, and can use theappropriate entry in Xi's probability table to determinethe probability distribution of values for Xi. 2



For the experimental results in this section, we usetwo algorithms for learning Bayesian networks. The�rst algorithm uses a form of stochastic hillclimbingover possible network structures using the BayesianInformation Criterion as its scoring function. AD-Trees [10] are used to speed up this search by decreasingthe amount of time necessary to calculate the datasetstatistics required for the search.The second algorithm takes two sweeps through thedataset. In the �rst sweep, the mutual informationbetween all pairs of variables is computed. Usingthis information, as well as BIC-like penalty termsfor the number of parameters required, the algorithmuses a greedy heuristic algorithm to add arcs tothe empty Bayesian network in order to arrive at anetwork in which each node has at most c parents.A second sweep is then made over the dataset to�ll in the probability tables of the resulting network.See [4] for further details. This algorithm is somewhatsimilar to an algorithm previously used by Sahami forclassi�cation [14]. In the special case where c is 1, thisalgorithm reduces to a penalized version of Chow andLiu's dependency-tree algorithm [3], and is provablyoptimal. While the network chosen by this greedyalgorithm won't generally be as accurate as one foundvia a more thorough search, this algorithm has theadvantage of being more computationally feasible ondatasets with many records or attributes.4.1 Data reordering and Dynamic BayesiannetworksIn applications in which we will only wish to scanthrough the dataset sequentially, we can take advantageof potential correlations between the ith record andi + 1th record to obtain further compression. Weuse Dynamic Bayesian Networks [5] to seek out andlearn such correlations and exploit them in a tighterencoding. These networks are learned with a greedyalgorithm similar to the greedy Bayesian network-learning algorithm described in the previous section.Even more aggressive compression can be obtainedwhen we are performing a data mining task that isindi�erent to the order in which records are presented.In that case we can deliberately pre-sort the recordsto induce inter-record correlations where none existedoriginally and save even more space. Again, see [4] forfurther details.4.2 Experimental ResultsIn this section, we examine the e�ectiveness of learningBayesian networks in order to perform compression witharithmetic coding on real datasets. In conjunction withthe Bayesian network learning algorithms discussedabove, we used a limited-precision arithmetic codinglibrary written by Carpinelli et al. [1] based on a paperby Mo�at et al. [9].

We compare the compression performance of arith-metic coding with Bayesian networks (using the bestof the two algorithms described above) and DynamicBayesian networks with the performance of gzip andbzip2, two popular compression utilities, on fourdatasets. Each dataset is compressed both in its nat-ural ordering and in an order in which the items havebeen lexigraphically sorted. (See [4] for details.)Census Banking Astro1 Astro2# dataset items 142500 6370 900000 3.08 M# variables 12 142 27 49variable arity 2-12 2-100 2-16 2-16Uncomp. binary 536 KB 416 KB 11.8 MB 53.1 MBgzip 294 KB 345 KB 6.9 MB 35.6 MBbzip2 220 KB 273 KB 5.6 MB 27.9 MBBayes Net 169 KB 166 KB 4.2 MB 23.9 MBDyn. Bayes Net 171 KB 166 KB 2.6 MB 16.1 MBSort + gzip 36 KB 343 KB 6.5 MB 34.0 MBSort + bzip2 58 KB 272 KB 5.5 MB 27.7 MBSort + Dyn. BN 19 KB 163 KB 2.5 MB 17.1 MBDepending on which dataset is being compressedand whether this dataset has been sorted, compressionusing Dynamic Bayesian networks in conjunction witharithmetic encoding was able to produce �les thatwere 40-60% smaller than produced by gzip, and 20-60% smaller than produced by bzip2. Sorting thedatasets sometimes increased compression performance| dramatically so in the case of the Census dataset.5 Hu�man networksThe arithmetic coding-based algorithms described aboveprovide excellent compression ratios. However, arith-metic coding is somewhat computationally expensive;also, random access is impossible within a sequence ofbits encoded with a single application of arithmetic cod-ing, since there is no well-de�ned bit position where theencoding of one variable ends and another begins.In contrast, Hu�man coding uses relatively inexpen-sive lookup operations to perform encoding and decod-ing, and each coded value naturally has a well-de�nedstart and end position in the resulting bitstream. Thismakes Hu�man-based coding attractive for applicationsrequiring faster decompression and/or random access.However, as mentioned previously, Hu�man-based de-coding provides poor compression performance whenapplied to probability distributions in which some val-ues are very probable. It is possible to group variablestogether to overcome this problem, but then the ta-bles required for encoding and decoding can becomeprohibitively large if too many variables are placed inone group. Additionally, if one variable is highly cor-related with many other variables, it may help to havethe value of that variable change the coding schemesassociated with several variable groups, without thatvariable's value actually being coded in the compressedrepresentations of all of the groups it in
uences. 3



We address these issues by using a hybrid Bayesiannetwork | referred to hereafter as a Hu�man networkfor convenience | in which each node actually modelsa group of variables in the dataset rather than anindividual variable. Each group of variables is Hu�mancoded as a single unit. For example, if a group containsthree binary variables, then that group is Hu�mancoded as if it were a single variable taking on eightpossible values; each of these eight values is assigneda probability equal to the joint probability of thecorresponding combination of values for the originalthree binary variables.In order to take into consideration dependenciesbetween variables residing in di�erent groups, we allowthe probability distribution over the possible valuesfor each group to be conditioned on the values ofother variables. For example, in Figure 1A, sixvariables have been placed into three groups. The jointprobability distribution of all the variables in Group3 (namely, variables x2 and x6) is conditioned on thevalues of variables x3; x4; and x5. This conditioning isrepresented in the graph by arcs from x3; x4, and x5to Group 3. Assuming all the variables are binary, thismeans that Group 3 requires eight Hu�man trees | onefor each possible combination of values to x3; x4 and x5.Each of these trees then has four leaves | one for eachpossible combination of x2 and x6. Note, however, thatGroup 3 is not conditioned on the value of x1, despitethe fact that x1 is in the same group as x4 and x5. Thisadded 
exibility can help in certain situtations | forexample, if x2 and x6 are independent of x1 given x4and x5, then conditioning Group 3 on the value of x1would double the number of Hu�mann trees required byGroup 3 without increasing Group 3's coding e�ciency.The Hu�man network can be thought of as aBayesian network over the original variables in which allvariables in the same group are completely connected(e.g., Figure 1B). This representation tells us whatdependencies between variables are being modelledby the coding scheme associated with the Hu�mannetwork. At the same time, the Hu�man network canbe thought of as a Bayesian network over the groupsthemselves (e.g., Figure 1C), where an arc exists fromgroup G to group G0 if and only if an arc exists from atleast one variable in G to the group G0 in the Hu�mannetwork. This view summarizes how the coding groupsin the Hu�man network are connected, thus telling uswhich groups of variables need to be decoded beforeother groups can be decoded.We use a given Hu�man network to perform com-pression as follows. First, we take one pass throughthe dataset to compute contingency tables for eachof the groups in the network. The contingency ta-ble for a given group with a set of variables V andset of conditioning variables P counts how many times

each possible combination of values for V SP occursin the dataset. These contingency tables are repre-sented sparsely so that combinations that never actuallyoccur in the dataset are never explicitly represented.Once these these contingency tables are computed, theyare transformed into Hu�man trees (which can subse-quently be transformed into tables for encoding pur-poses). When compressing a �le, we encode the Hu�-man trees at the beginning of the �le (we omit the de-tails), and then encode all of the records. Each recordis encoded group by group in an order consistent witha topological sort of the groups in the network. Decom-pression is performed in an analogous manner.5.1 Learning Hu�man networksThe problem of automatically �nding e�ective Hu�mannetworks to use for compression is very similar to theproblem of �nding maximum-BIC Bayesian networks,and is almost certainly at least as di�cult. Therefore,as in the case of learning Bayesian networks, we mustrely on heuristic search techniques. We have not yet ex-tensively explored possible search algorithms for �ndinggood Hu�man networks; however, we have implementeda relatively simple multiple-start stochastic hillclimbingalgorithm. At each step during a hillclimbing run, thesearch algorithm considers adding an arc from a ran-domly selected variable to a randomly selected group(or removing the arc if one already exists), or moving avariable from its current group to a randomly selectedgroup. If the change under consideration would cre-ate a cycle in the Hu�man network, then it is immedi-ately rejected and another change is randomly consid-ered. Otherwise, the algorithm evaluates the resultingnetwork and compares its estimated compression per-formance to the estimated compression performance ofthe current working network. A good network mini-mizes the total number of bits required to: (1) encodethe network itself, and (2) encode the data with the net-work. Both of these terms can be estimated accuratelyfrom the Hu�man trees associated with the group nodesif we have computed them.5.2 Experimental ResultsWe use multiple-restart hillclimbing over Hu�mannetworks in order to �nd good coding networks forthe three datasets previously examined. Once thealgorithm settled on a \good" network, we measured thenetwork's performance both in terms of compressed �lesize and in terms of how fast they were able to performdecompression on encoded representations of the datain memory. Speed is measured in terms of the numberof bits of uncompressed data that can be decoded persecond on a 450 MHz Pentium II.Arithmetic coding Hu�man network codingCensus 169 KB, 0.54 MB/sec 171 KB, 1.9 MB/secBanking 166 KB, 0.49 MB/sec 179 KB, 1.1 MB/secAstro1 4.2 MB, 0.50 MB/sec 4.3 MB, 2.2 MB/secAstro2 23.9 MB, 0.31 MB/sec 24.1 MB, 1.3 MB/sec 4
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A B CFigure 1: An example Hu�man network (A), along with its corresponding variable-based (B) and group-based (C)Bayesian networksAs one might expect, the Hu�man-based codingperformed slightly (1 to 8%) worse than arithmeticcoding in terms of �le size, since arithmetic codingdoes not have to output integral numbers of bitsfor individual variables or groups of variables as theHu�man-based coding does. However, the Hu�man-based decoding was two to four times faster thanarithmetic decoding, and still achieved signi�cantlysmaller �les than those achieved by the dictionary-basedapproaches (see section 4). While this is still muchslower than the decoding speed of gzip and bzip2,there are further optimizations to be performed thatwill be examined in [4].6 Concluding remarksRelated WorkAutomatically-learned Bayesian networks have beenused previously in conjunction with arithmetic encodingin recent research by Brendan Frey [6]. Rather thanlearning the structure of the Bayesian network, Freyuses a �xed network structure in which each nodehas many parents; the probability of each node givenits parents is paramaterized using logistic regression.This approach has disadvantages compared to theapproaches we describe here, although it has someadvantages as well. In particular, Frey's approachmay be more di�cult to apply to nonbinary datasets.Additionally, Frey's use of hidden variables necessitatesthe use of a complex \bits-back" coding scheme in orderto achieve decent compression rates, and this schememay prevent �ne-grained random access to the data.Comparisons with Frey's approach will be performed infuture research.ConclusionThis paper has proposed that Bayesian networks, inaddition to their other virtues, may be an importanttool for dataset compression. Experimental resultsshow that excellent compression ratios are obtainablewith arithmetic coding in conjunction with Bayesiannetworks. The Hu�man networks introduced hereprovide nearly the same compression ratios, but withsigni�cantly less computational time.References[1] J. Carpinelli, A. Mo�at, R. Neal, W. Salamonsen, L. Stuiver,
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