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Abstract explicit was the “Bit-Based Simulated Crossover (BSC)”

operator [Syswerda,1993]. Instead of combining pairs of
Probabilistic models have recently been utilized for the opti-  solutions, population-level statistics were used to generate
mization of large combinatorial search problems. However, new solutions. The BSC operator works as follows. For
complex probabilistic models that attempt to capture inter- — ooy it nositioh the number of members which contain a
parameter dependencies can have prohibitive computational . . e , .
costs. The algorithm presented in this paper, termed ©N€iN that bit position is counted. Each member’s contribu-
COMIT, provides a method for using probabilistic models in  tion is weighted by its fitness with respect to the target opti-
conjunction with fast search techniques. We show how mization function. The same process is used to count the
COMIT can be used with two very different fast search algo-  nymber of zeros. Instead of using traditional crossover
rithms: hillclimbing - and Population-based incremental 405105 to generate new solutions, BSC generates new
learning (PBIL). The resulting algorithms maintain many of - . o o
the benefits of probabilistic modeling, with far less computa- ~ dU€ry points by stochastically assigning each bit's value by
tional expense. Extensive empirical results are provided; the probability of having seen that value in the previous

COMIT has been successfully applied to jobshop schedul- population (the value specified by the weighted count)
ing, traveling salesman, and knapsack problems. This paper [Syswerda, 1993].
also presents a review of probabilistic modeling for combi-

natorial optimization. BSC used a population of solutions from which the sam-
pling statistics were entirely rederived after each genera-
1 Background tion. In contrast, Population-based incremental learning

(PBIL) incrementally adjusts its sampling statistics after

Within the past few years, there have been several novetach generation [Baluja, 1995]. Rather than being based on
methods proposed for probabilistic modeling for combina- population-genetics, PBIL is very similar to a cooperative
torial optimization. Unlike methods such as hillclimbing, system of discrete learning automata in which the automata
which progress by sampling solutions neighboring the cur-choose their actions independently, but all automata receive
rent solution, probabilistic methods explicitly maintain sta- a common reinforcement dependent upon all their actions
tistics about the search space by creating models of th¢Thathachar & Sastry, 1987]. Unlike most previous studies
good solutions found so far. These models are sampled tof learning automata, which have commonly addressed
generate the next query points to be evaluated. The sampleabtimization in noisy but very small environments, PBIL
solutions are then used to update the model, and the cycle iwas used to explore large deterministic spaces. The algo-
continued. rithm maintains a real-valued probability vector from
which solutions are generated. As search progresses, the
values in the probability vector are gradually shifted to rep-
esent high-evaluation solution vectors. This algorithm will
i)e described in detail in Section 4.

By maintaining a population of points, genetic algorithms
(GAs) can be viewed as creatiingplicit probabilistic mod-
els of the solutions seen in the search. GAs attempt t
implicitly capture dependencies between parameters an
the solution quality by maintaining a population of solu- Note that the probabilistic model created in PBIL is
tions. Samples are generated by applying randomizedextremely simpleThere are no inter-parameter dependen-
recombination operators to high-performance members ofties modeled; each bit is examined independently.
the population [Goldberg, 1989][Holland, 1975][De Jong, Although this simple probabilistic model was used, PBIL
1975]. Unlike the models explored in this paper, however,was very successful when compared to a variety of stan-
no explicit information is kept about which groups of dard genetic algorithm and hillclimbing algorithms on
parameters contribute to the quality of candidate solutions.

One of the first steps towards making the GA's model more

1. Note that in this paper, we will discuss combinatorial optimization
Copyright (c) 1998, American Association for Artificial Intelligence with the solutions represented as binary vectors. However, all of the
(www.aaai.org). All rights reserved. results can be trivially extended to higher cardinality alphabets.



numerous benchmark and real-world problems [Baluja,

) _ herellx, is the set of % ts in B and is th -
1997][Greene, 1996]. A more theoretical analysis of PBIL Where %, 1S the Set ofs parents in £ ana is e. num.
can be found in [Juels, 1997][Kvasnickat al ber of nodes. The tree-shaped networks described in the

1995][Hohfeld & Rudolph, 1997]. previqus paragraph are a special case of Bayesian networks
in which each node in the graph has at most one parent.
The most immediate way in which the PBIL algorithm can pg. may be thought of as employing a degenerate Baye-
be improved is to create mechanisms that capture intersjan network in which the graph has no edges. Unfortu-
parameter dependencies. One of the first extensions t@ately, when we move toward models in which variables
PBIL along these lines was termédutual Information  can have more than one parent, the problem of finding an
Maximization for Input Clustering (MIMIC)De Bonetet  optimal network with which to model a set of data becomes
al., 1997]. MIMIC captured a heuristically chosen set of Np-complete [Chickeringet al, 1995]. However, search
the pairwise dependencies between the solution parameneyristics have been developed for automatically learning
ters. MIMIC maintained the top N% of all previously gen- Bayesian networks from data (for example [Heckerneain,
erated solutions, from which it calculated pair-wise g 1995]). A common approach is to perform hill-climb-
conditional probabilities. MIMIC used a greedy search 10 jng over network structures, starting with a relatively sim-
generate a chain in which each variable was conditioned Oible network. This approach was used for combinatorial
the previous variable. The first variable in the chaip, X optimization in [Baluja & Davies, 1997b]. The empirical
was chosen to be the variable with the lowest unconditionakesults with Bayesian networks showed a noticeable
entropy H(X). When deciding which subsequent variable improvement over tree-based optimization in some prob-
Xi+1 to add to the chain, MIMIC selected the variable with lems that exhibit complicated dependencies. However, this
the lowest conditional entropy H(X | X;). As with PBIL, benefit is achieved through significantly more computa-
after creating the full chain, it randomly generated more t|ona! effort. In other problems in which only a few depen-
samples from the distribution specified by this chain. ThedenCIeS must be modeled, the tree-based model performed

entire process was then repeated. as well as the Bayesian network.
In [Baluja & Davies, 1997a], MIMIC's probabilistic model Thus far, all of the approaches that model dependencies

was extended to a larger class of dependency graphs: treé‘g’;\ve been used for optimizing relatively small problems
in which each variable is conditioned on at most one par-(With search spaces smaller thaf*% Extending these
ent. As shown in [Chow and Liu, 1968], a simple algorithm models to large problems is challenging because of the
can be employed to select thptimal tree-shaped network ~ Severe computational expense of modeling the dependen-
for a maximum-likelihood model of the data. In experimen- Cies between a large number of variables. On the other
tal comparisons, MIMIC’s chain-based probabilistic mod- hand, when using less computationally expensive search
els typically worked significantly better than PBIL's algorithms, it is a common procedure to restart them with
simpler models. The tree-based graphs typically workedrandom initialization points in the hope that they will find
significantly better than MIMIC’s chains. Thus, using more better local optima. After performing several such restarts,
accurate probabilistic models increased the probability ofthere is information to be gained by analyzing the various
generating new candidate solutions in promising regions oflocal optima found in multiple search runs and looking for
the search space. Tree-Based graphs are the basis of tfatures they have in common.

probabilistic models used in this study, and will be returnedone |earning-based approach to selecting good starting
to in Section 2. points for hillclimbing was presented in [Boyan & Moore,

An extension of pair-wise dependency modeling is arbi- 1997]. The algorithm attempts to map a set of user-supplied
trary dependency modeling. Bayesian networks [Pearlfeatures of the state space to a single value. This value rep-
1988] are a popular method for efficiently representingresents the quality of solutions that were found by hill-
dependencies and independencies in probability distribuclimbing runs passing through states with similar features.
tions. Bayesian networks are directed acyclic graphs inThe algorithm then uses this “value function” to select
which each variable is represented by a vertex, and deperPromising starting points for future hillclimbing runs.

dencies between variables are encoded as edges. As in th this paper, we utilize probabilistic methods to model the
tree-based algorithm, the networks model probability dis- so|utions obtained by faster search algorithms. This con-

tributions of the form shown in Equation (1). trasts with the approach of [Boyan and Moore, 1997] since
an explicit probabilistic model is used to model only the
n top-performing solutions gathered through all of the fast
Pe(XyXp) = [ Peii|Mx J 1) searches. Further, the model is based directly on the param-
=1 ' eters of the solution encodingp high-level attributes of

the problem are provided to the algorithithese models



are then Sampled to inte”igently Se_leCt new _Starting points « Initialize datase$ with random solutions from uniform distribution
for further searches. The resulting algorithm, termed
COMIT (Combining Optimizers withMutual I nformation * While termination condition is not met:

. f the b fit f deli the d « Create probabilistic model &
Trees), gains most of the benefits of mode Ing € aepen * Use model to stochastically generitsolutions. Evaluate new solutions.

dencies in the search space at a significantly reduced com)- -« Execute fast-search procedure, initialized with the best solutions gene

putational cost. from the model. N -
* Replace up tM AX_INFLUENCE bitstrings inS with better bitstrings
In the next section, we describe the COMIT algorithm, and found during the fast-search run just executed.

give .details of how the probabilistic model is c.reated. IN'| User DEFINED CONSTANTS (values used in this study)

Sec'uc_)n 3, we |IIustrat_es _the_ use of CO!\/IIT_ with searf:h IS): Constant size of the data§s1000)

techmques, such as h|”C||mb|ng: that maintain Only a sin- MAX_INFLUENCE: max number of bitstrings to replaceSmwith better
gle solution from which new solutions are generated. SecA_strings from a single fast-search run (100).

tion 4 demonstrates how COMIT can be_ _mtegrat.ed .Wlth Figure 1: Overview of the COMIT algorithm.

algorithms that themselves model probability distributions

of possible solutions, such as PBIL. Extensive empiricalfied model P’(X, ..., X, of the empirical probability

results are provided in both sections. Finally, Section 5 pre-gjstribution P(X, ..., X,) entailed by the bitstrings & As
sents conclusions and directions for future research. in [Baluja & Davies, 1997a], we restrict our model

P (X4, ..., Xy to the following form:

2 TheCOMIT Algorithm

The basic premise of the COMIT algorithm is that probabi- n .

listic models can be used to intelligently select starting P{(XgXp) = I PE}Xi\”xiD )

points for fast search algorithms such as hillclimbing or =1

PBIL. The model is created based upon good solutions . : “ "\ ar ;
X herell I le. W h

gathered from all previous searches. The general procedur\év eretly, 18 Xs single “parent” variable. We require that

is shown in Figure 1. there be no cycles in these “parent-of”’ relationships: for-

Specifically, once we have chosen a model R:(X,) of mally, there must exist some permutatians (M, ..., m)

the set$S, of previously found good solutions, P’ is used to ©f (1, ..., n)such that (M, = X;) 0 m(i) <m(j) for all

stochastically generate a number of candidate solutions; (The “root” node, X%, will not have a parent node; how-

The best of these newly generated solutions are used to iNsver. this case can be handled with a “dummy” noge X

tialize the fast-search algorithm. Once the fast-search has . .
terminated, up to MAX_INFLUENCE solutions i@ are such that P(¥ | Xo) is by definition equal to P@.) In

replaced by better solutions generated during the run; thother wor_ds, we restri<_:t' Ro _factorizations representable
size ofSis kept constant. The MAX_INFLUENCE param- PY Bayesian networks in which each node (exceptias

eter is important, and must be set by considering the size opne parentj.e., tree-shaped graphs. As described earlier,
S. If MAX_INFLUENCE is set too high, too much weight more complete Bayesian Networks could be used; however,
may be given to a single fast-search run, resulting in prematrees were used because of computational limitations.

ture convergence. If it is too low, then previous!y found A method for finding the optimal model within these
good solutions may not carry enough weight; this causegestrictions is given in [Chow and Liu, 1968]. A complete
the algorithm to put too much emphasis on random eXp|0'vveighted graplG is created in which every variable %

ration. The process is repeated until a termination conditionr : : :
. ! . : . epresented by a corresponding vertexavid in which the
is met. The next section describes in detail how the proba- P y P g &

bilistic model of the good solutions is generated. weight W; for the edge between verticesand V is set to
the mutual information 1(XX;) between Xand X:
2.1 Modeling Dependenciesin the COMIT algorithm
Suppose we have a set of good soluti®sfound from (X, X)) = sz(xi = &, X,= b) (og POE =a Xj= ?)
previous fast-search runs. We wish to discover what inter- a P(X; =a) [P(X; = b) 3)
parameter dependencies are exhibited by the bit strings iq‘he empirical probabilities of the form P(Xa) and
S, and use this information to generate good starting points . :
for future hillclimbing runs. To do this, we try to model a (% = a, % =b) are computed directly fro&for all com-
probability distribution PX) = P(X;, ..., X, over bit- binations of i, j, a, and b (a &_b are binary assignments to
strings of length n, where ;X..., X, are variables corre- Xi & Xj)- Once these edge weights are computed, the max-

sponding to the values of the bits. We try to learn a simpli-MUM spanning tree d& is calculated, and this tree deter-




mines the structure of the network used to model the
original probability distribution. Since the edgesGnare
undirected, a decision must be made about the directional
ity of the dependencies with which to construGt How-
ever, all such orderings conforming to the restrictions
described earlier model identical distributions.

Among all trees, this produces a tree that maximizes:

(4)

n
.21' Koty Xmcp)
=

this minimizes the Kullback-Leibler divergence, D(B||P
between P (the true empirical distributions exhibitedspy
and P (the distribution modeled by the network):

P(X)
P'(X)

D(PIIP) = 3 P(X)log (5)

As shown in [Chow & Liu, 1968], this produces the tree-
shaped network that maximizes the likelihoodSpiinder
the assumption that the membersSafere generated inde-
pendently and identically distributed. Our optimization
algorithm violates this assumption since many highly cor-

« Initialize datase$® with random solutions from uniform distribution

| » While termination condition is not met:
« Create a tree-shaped probabilistic netvibitkat modelsS.
« UseT to stochastically generale solutions. Evaluate these new solutions|
« Start hillclimbing run initialized with the single best of tesolutions.
* Replace up tM AX_INFLUENCE bitstrings inS with better bitstrings
found during the hillclimbing run just executed.

USER DEFINED CONSTANTS (values used in this study)
|S): Constant size of the data$e{1000)

MAX_INFLUENCE: max number of bitstrings to replaceSwith better
strings from a single fast-search run (100).

Figure 3: Overview of the COMIT algorithm with hillclimbing.

with better solutions from this run, and the process is
repeated. The algorithm is summarized in Figure 3.

3.1 Algorithm Details

Hillclimbing (HC): The baseline search technique is next-
ascent stochastic hillclimbing. The hillclimbing algorithm
used has three notable properties. First, it allows moves to
solutions with higher or equal evaluation; this is extremely
important for hillclimbing to work well in many compli-
cated spaces, since this allows it to explore plateaus. Sec-
ond, before restarting, up ATIENCE evaluations are

related members are added to the dataset from any singlgllowed that are worse than the best evaluation seen so far

fast-search run; however, the use of the

MAX_INFLUENCE parameter limits this correlation.
This tree generation algorithm, summarized in Figure 2,

runs in time O@|*n2), wherel§] is the size o andn is the
number of bits in the solution encoding.

Generate an optimal dependency tree:
« Set the root to an arbitrary bit ¢,
« For all other bits X set bestMatchinTree[Kto Xy
» While not all bits have been added to the tree:

« Of all the bits not yet in the tree, pick bigagwith the maximum
mutual information 1(X4q4 bestMatchinTree[Xyd).
usingSto estimate the relevant probability distributions.

» Add X qqto tree, with bestMatchinTreel¥d as parent.

* For each bit X%, not in the tree,
if I(X oyt bestMatchinTree[¥,d) < I(Xout Xadd-

then set bestMatchinTreef]=X 3q¢

Figure 2: Procedure for generating the dependency tree.

3 Using COMIT with Hillclimbing

This section illustrates the use of COMIT with search tech-
niques, such as hillclimbing, that maintain a single solution
from which new solutions are generated. The algorithm
uses a tree-shaped probabilistic netwdrkio model a set,

S, of previously found good solution§.is then sampled to
generateK new solutions, of which the highest-evaluation
solution is used as the starting point of a hillclimbing run.
Up to MAX_INFLUENCE solutions inS are replaced

in the run. Evaluations which are equal to the best evalua-
tion seen so far are not counted towardsRA&I ENCE
count. This parameter has a large impact on the effective-
ness of hillclimbing in large search spaces. Therefore, for
each problem, multiple settings were tried for this parame-
ter. The range of values was ({f] to (10*K]), where X|

is the length of the solution encoding. The results with the
best setting of thaPATIENCE parameter are reported.
Third, the hillclimbing algorithm used is a next-ascent hill-
climber; as soon as a better solution is found, it is accepted.
This contrasts with steepest-ascent hillclimbing, which
searches all possible single-bit changes and accepts the one
with the largest improvement. On the problems explored
here, steepest ascent hillclimbing did not work as well.

COMIT: We experiment with two versions of the COMIT
algorithm: one withK set to 100 (termed COMIT-100),
which samples the tree 100 times before selecting the best
point; and one with K=1000 (termed COMIT-1000). These
evaluations are counted against the total allowed.

Augmented Hillclimbing (AHC): The fact that COMITK
examinesK points before choosing one to use for hill-
climbing is a possible confounding factor in determining
how effective COMIT is in comparison to HC. To ensure
that it is not simply the process of selecting thedeefore
hillclimbing that gives performance gains, we augment hill-
climbing as follows. Before the beginning of each run,
AHC-K examine« randomlychosen points from which it
selects the best one as the starting position. (The difference




between this and COMIT is that COMIT sampikepoints .00
from the dependency tree). Two versions of AHC are sse
examined: AHC-100, and AHC-1000. =00

a.50

Note that all of the parameters of all of the algorithms were =-cc

tuned on the 100-city TSP problem, and were held constant®=° |~

for all runs and all problems.

2.50

2.00

3.2 Results 1.50

1.00

For each algorithm on each problem, we try multiple set-

tings of the PATIENCE parameter. The setting of the _ __
PATIENCE parameter that gives the best result is reported . ..
here. The results reported are the average of at least 25 runsso
of the entire algorithm. Each algorithm is given 200,000 =-°°
function evaluations on each problem. Because of space” ™"
limitations, the full description of the problems cannot be _ _,
given here. However, brief descriptions are given in Appen- =.oo
dix A. The results are shown in Table I. In the first line of ==e
each cell in the table, the numerical results are presented. In~°°

the second line, the rank (1[best]..5[worst]) of each algo-

6.00

1000 is whether the difference between the results achieved
is significantly different from that of COMIT-100 and
COMIT-1000, respectively. The significance is measured

|
oooo

|
SeleRele)

TOO-OO

00O

Evaluation Number * 19
rithm is given. Also given for HC, AHC-100 and AHC- Figure 4: These graphs show the values of every evaluation
performed by the HC (top) and COMIT (bottom) algorithms
for the TSP domain. The object is to minimize the tour length.
Note that these runs are extended to 400,000 evaluations.

by the Mann-Whitney test (a non-parametric equivalent to|n almost every problem examined, COMIT significantly
thet-test) at the 95% confidence interval.

Tablel: COMIT with Hillclimbing

Size of HC AHC-100|AHC-1000, COMIT- | COMIT-
Problem| (#C100, | (#C100, | (#C100, 100 1000
in Bits || #C1000) | #C1000) | #C1000)
(Goal: |(95% Conf|(95% Conf{(95% Conf
MAX or || Interval) | Interval) | Interval)
MIN)
Knapsack 512 3238 3377 3335 6684 6259
512 elem. | (MAX) || 5(Y,Y) | 3(Y.Y) | 4(YY) 1 2
Knapsack 900 3403 3418 3488 7733 7182
900 elem. | (MAX) || 5 (YY) 4(Y)Y) 3 (YY) 1 2
Knapsack 1200 5226 5270 5280 13052 12829
1200 elem. | (MAX) || 5 (YY) 4 (YY) 3(Y,Y) 1 2
Jobshop-enc|l 500 998 988 982 978 970
10x10 MIN) || 5¢YY) | 4(YY) | 3(NY) 2 1
Jobshop-enc2 700 965 961 957 954 953
10x10 (MIN) 5(YY) 4(Y)Y) 3 (N,N) 2 1
Jobshop-enc2 700 1207 1201 1199 1196 1196
20x5 MIN) || 5¢VY) | 4(YY) | 3(NN) 2 1
Binpack (10°)| 504 1.70 1.58 1.62 1.56 1.45
8 bins, 168 el. (MIN) 5(N,Y) 3 (N,N) 4 (N,N) 2 1
Binpack (10%)| 800 1.54 1.50 1.38 1.11 1.24
16 bins, 200 gl. (MIN) 5(YY) 4 (YY) 3 (YY) 1 2
Summation 675 64 61 59 54 52
Cancellation| (MIN) 5(Y,Y) 4 (YY) 3 (YY) 2 1
TSP 700 1629 1599 1573 1335 1336
100city | (MIN) || 5(Y,Y) | 4(VY) | 3(Y.Y) 1 2
TSP 1600 15119 15286 15100 15189 15117
200 city (MIN) 3(N,N) | 5(N,N) | 1(N,N) 4 2
TSP 1200 11451 11247 11290 9812 9077
150city | (MIN) || 5(V.,Y) | 3(VY) | 4(YY) 2 1

improves the performance over hillclimbing. Only in one
problem (200-city TSP) did one of the COMIT runs
(COMIT-100) not perform as well as HC. However, the dif-
ference in performance was not statistically significant.

To provide some intuition about how the COMIT algorithm
progresses, Figure 4 shows the values of each evaluation
performed by the HC and COMIT-1000 algorithm in the
TSP domain. There are four features that should be noticed.
First, the spikes in the evaluations correspond to the begin-
ning of hillclimbing runs. In the COMIT graph, the spikes
also represent th& samples generated by sampling the
tree. Second, for the COMIT algorithm, the random initial
samples in the datasBtwere entirely removed by evalua-
tion #90,000 (this approximately corresponds to the num-
ber of evaluations used in the first 10 hillclimbing runs;
each run contributed 100 samples to the dataset, and the
size ofSis 1000). Third, the magnitude of the spikes in the
COMIT plot gradually decreases; this corresponds to the
COMIT algorithm learning to seed the hillclimbing runs
with high-quality solutions. Fourth, and most importantly,
the final solutions found at each hillclimbing run have
improved over standard hillclimbing, even before the HC
runs are started at noticeably better solutions. This indi-
cates that by using the interparameter dependency models
to generate starting points, the hillclimbing runs are started
in basins of the search space that lead to high-evaluation
solutions.



4 Using COMIT with PBIL

The previous section demonstrated that relatively complex
probabilistic models can be used in conjunction with search
techniques, such as hillclimbing, that maintain only a sin-
gle solution from which new solutions are generated. In
this section, we examine how to integrate COMIT with
other algorithms that themselves model probability distri-
butions of possible solutions. As described in Section 1,
PBIL only maintains unconditional probabilities; no inter-
parameter dependencies are modeled. A veetspecifies
the probability of generating a 1 in each bit position. Ini-
tially, all values inP are set to 0.5. A number of solution
vectors are generated by stochastically samBireach bit
is sampled independently of all the others. The probability
vector is then moved towards the generated solution vecto
with the highest evaluation according to Equation 6. The
update rule is similar to the updates used in unsupervise
competitive learning [Hertzt al. 1991].
ProbabilityVectog , 4 (6)
(1-a) EProbabiIityVectoE’ pta [BestSqutionVectqr

ProbabilityVectoy; is the value of the probability vector at
time t, for parameter. BestSolutionVectois the value of

parameter in the vector being used to update the probabil-
ity vector.a is a learning rate parameter that determines
how much each new datapoint changes the value of th
probability vector. The basic version of the PBIL algorithm
and its parameters are shown in Figure 5. The final result o
the PBIL algorithm is the best solution generated through-
out the search. The version used here extended this as su
gested in [Baluja, 1997]: first, a mutation operator was
added. This randomly selects positions in the probability
vector to alter. The motivation for using a mutation opera-
tor is to preserve diversity in the generated solutions; there
fore, the mutation operator always moves the probabilities
to higher-entropy states (closer to 0.5). Second, instead o
only moving towards the best solution, the probability vec-
tor was also moved away from the worst solution in the
positions in which the best and worst solutions differed.

In the experiments conducted with COMIT in this section,
three algorithms were compared. The first algorithm, which

we use as a baseline, is PBIL. The parameters are set as fa

lows: o=.15, M=1, N=50, 0.02,

MUT_PROB

MUT_SHIFT= 0.05; these parameters are also used for the
second and third algorithms. The second algorithm tested ig

COMIT-PBIL. COMIT-PBIL is identical to the version of
COMIT used for hillclimbing except for the following dif-
ferences: PBIL is used instead of hillclimbing; each PBIL
run is terminated after 5000 evaluations without improve-
ment. At the beginning of a PBIL run, each entry of the
probability vector,P, is initialized to the average value of

*rkkkk |nitialize Probability Vector ***+xx
fori:=1to LENGTH do PJ[i] := 0.5;

while (NOT termination condition)
*rxkk Generate Samples **xxx
fori:=1to Ndo
solution_vectors][i] := generate_vector_with_probabilities (P)
evaluations][i] :=Evaluate_Solution (solution_vectorsi]);

best_solution_vectors =
sort_solutions_best_to_worst (solution_vectors,evaluations)

**+x Update Probability Vector towards best solutions****
for i :== M downto 1 do
forj:=1to LENGTH do
P[j] := P[j] * (1.0 - a) + best_solution_vectors[i][j]*d);

*+k Mutation - Always move towards 0.5 ****
fori:=1to LENGTH do
if (random (0,1) < MUT_PROB) then
if (P[i] > 0.5) P[i] := P[i]*(1.0 - MUT_SHIFT);
j else P[i] := P[i]*(1.0 - MUT_SHIFT) + MUT_SHIFT

Return the best solution generated throughout the entire search.

PBIL CONSTANTS:

N: # of vectors generated before update of the probability vector.
a: the learning rate, how fast to exploit the search performed.

M: number of vectors in the population that are used to update P.
LENGTH: # of bits in the solution encoding (problem dependent).
MUT_PROB: probability of “mutating” each bit position.
MUT_SHIFT: amount a mutation alters the value in the bit positior

Figure 5: Basic PBIL algorithm for a binary alphabet

éhat position in the top 10% of the solutions generated by

sampling the tree-based model 1000 times. As described in
ection 2, the tree-based model is created from the data-set
, wWhich contains the good solutions returned from multi-
le PBIL searches. As before, the sizeSols 1000 and
AX_INFLUENCE is 100. The algorithm is shown in

Figure 6. The third algorithm tested is PBIL with restarts;

after 5,000 evaluations are conducted with no improve-

ment, the algorithm is restarted. This test is to ensure that it

is the probabilistic modeling (of COMIT) that is responsi-
le for the increase in performance, not simply the fact that
BIL is being restarted. The parameters for all of the algo-

rithms were tuned on the 100-city TSP problem, and no

parameter changes were made for any other problem.

« Initialize datase$§ with random solutions from uniform distribution

» While termination condition is not met:
I- ¢ Create a tree-shaped probabilistic netwbitkat modelsS.
« UseT to stochastically generalke solutions. Evaluate new solutions.
« Select topC% of theK generated solutions.
« Initialize PBIL's P vector to unconditional probabilities in selected solutig
« Execute PBIL run. Replace upMbAX_INFLUENCE bitstrings inS
with better bitstrings found during the PBIL run just executed.

e

D

USER DEFINED CONSTANTS (values used in this study)
|S]: Constant size of the data§e({1000)

MAX_INFLUENCE: max number of bitstrings to replaceSmwith better
strings from a single fast-search run (100).

C: Percentage df generated solutions used to initialR&10)

Figure 6: Overview of the COMIT algorithm for PBIL.



The results are shown in Table Il. Each experiment wasnificantly better final solutions.

given 600,000 evaluations. _The results reported are thPOne can imagine that COMIT lies in the middle of a con-
average of at Iez_ast 50 experiments per algorithm, per IC?mbfinuous spectrum, with the ends representing never using a
lem. In the first line of each cell in the table, the numerical robabilistic model (as is done with hillclimbing) and

results are presented. In th(_a segonq line, the_ ran Iways using a probabilistic model (as is done in [Baluja &

(1[best]..3[\{vorst]) of each algorithm is given. A_ISO given Davies, 1997]). In the Tree-based algorithm described in
for P.BIL with no-restarts and rand_om restarts is Whether[Baluja & Davies, 19974a], all of the candidate generation is

the difference between the results is significantly dn‘ferentdone by sampling the model, and the high-evaluation points
from those of COMIT-PBIL. are added directly back in& The empirical results with

Tablell: COMIT with PBIL COMIT have demonstrated that even infrequent use of the
. probabilistic model is advantageous. An immediate direc-
Size of Problemd  PBIL - PBIL - Restar ’ - - A )
inBits || NoRestart |\ 2" ol commpaiL tion for future research is to determine if there is any per-
(Goal: Maximizg | (# to COMIT | 5 504"y formance loss incurred by using the complex probabilistic
or Minimize) || at 95% conf) Lo .
Rnapsack =h 523 ot 572 models only for the. initialization of. §egrches when ‘com-
512 elem. (MAX) 2(Y) 3(Y) 1 pared to always using the probabilistic model (which is
Knapsack 900 9601 9402 10134 extremely computationally expensive). In the preliminary
900 elem. (MAX) 2 3 ! tests conducted, the COMIT algorithm was often able to
Knapsack 1200 14668 13768 18014 _ H i
1200 alom. (MAX) 2 (V) 3(Y) 1 perfo_rm as We.|| as the Tree-Based aIgorlth_m. Quantn‘ylng
Sohehonene 1 — ~> = == the dlfferen(?e in performance and computational expense is
10x10 (MIN) 3(Y) 2 (N) 1 currently being researched.
Jobshop-enc 2 700 959 943 940 f . .
1010 (MIN) 3(Y) 2(Y) 1 Because different search algorlthms_ have dlffe_rent sam-
Jobshop-enc 2 200 1188 1176 1170 pImg_procedures, each may explore different regions of the
20x5 (MIN) 3(Y) 2(Y) 1 solution space. By allowing all of the search algorithms to
Binpack (10°) 504 1.4 2.8 2.8 contribute solutions to the dataset from which dependen-
8 bins, 16?;" (MIN) 1M L) 3 cies are modeled, COMIT provides a simple method for
b U0 B o 20 190 combining multiple different search algorithms.
gumm"ati_on 3|7N5 123 23§l 353 Since the probabilistic model is updated infrequently by
a':zpa l (700) 1;31 15(1; — COMIT, it may be feasible to replace the dependency-tree
100 city (MIN) 2(Y) 3(Y) 1 model with more sophisticated but computationally expen-
Tsp 1600 17148 21858 14870 sive models, such as general Bayesian networks. It will be
200 city (MIN) 2(Y) 3(Y) 1 interesting to determine if automatically learning networks
TSP 1200 11035 13698 9078 with hidden variables [Friedman, 1997] would improve
150 city (MIN) 2(Y) 3(Y) 1 L . . .
optimization performance. It will also be interesting to

examine whether it is possible to explicitly use the fact that
the samples modeled ametindependent, as is assumed by
the probabilistic models used here.

In summary, in the majority of the problems examined, the
COMIT-PBIL approach was significantly better than PBIL,
both with and without restarts. This is encouraging, since
PBIL has itself often outperformed standard genetic algo-\We illustrated how to incorporate COMIT with PBIL and
rithms and hillclimbing techniques on similar problems hillclimbing. Although not reported here, we have used
[Baluja, 1997]. Two exceptions to this are the binpacking COMIT to restart genetic algorithm (GA) based searches.
problem and the summation cancellation problem. In bothThis combination improved the performance over the GA
of these problems, COMIT’s choice of restarting points did alone. However, neither the GA nor COMIT-GA were typi-

not hurt performance; however, not restarting PBIL at all cally able to perform as well as the hillclimbing and PBIL
led to better performance. approaches presented here. COMIT requires no change to

be used with other search algorithms such as simulated
annealing or TABU search [Glover, 1989]. In addition to
these general search techniques, it can also be used with

We have shown that probabilistic models can be used tgandomized search techniques designed to address specific
combine the information gathered from runs of fast searchProblems, such as WALKSAT [Selman al 1996].

algorithms. By using a model of the interparameter depen-References
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_ 1.0
1 Traveling Salesman Problems (TSP) ~2.56<'s, < 2.56 Vi = S+Y_q = N
The encoding used in this study requires a bit string of size o i=2 N C+ Z\yi\
- . o i =1..N I 1
NlogyN bits, where N is the number of cities in the problem. Each yi=s
1->1 1

city is assigned a substring of lengthJNgoits; the value of these C= 100000



