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Abstract

Probabilistic models have recently been utilized for the opti-
mization of large combinatorial search problems. However,
complex probabilistic models that attempt to capture inter-
parameter dependencies can have prohibitive computational
costs. The algorithm presented in this paper, termed
COMIT, provides a method for using probabilistic models in
conjunction with fast search techniques. We show how
COMIT can be used with two very different fast search algo-
rithms: hillclimbing and Population-based incremental
learning (PBIL). The resulting algorithms maintain many of
the benefits of probabilistic modeling, with far less computa-
tional expense. Extensive empirical results are provided;
COMIT has been successfully applied to jobshop schedul-
ing, traveling salesman, and knapsack problems. This paper
also presents a review of probabilistic modeling for combi-
natorial optimization.

1   Background

Within the past few years, there have been several novel
methods proposed for probabilistic modeling for combina-
torial optimization. Unlike methods such as hillclimbing,
which progress by sampling solutions neighboring the cur-
rent solution, probabilistic methods explicitly maintain sta-
tistics about the search space by creating models of the
good solutions found so far. These models are sampled to
generate the next query points to be evaluated. The sampled
solutions are then used to update the model, and the cycle is
continued.

By maintaining a population of points, genetic algorithms
(GAs) can be viewed as creatingimplicit probabilistic mod-
els of the solutions seen in the search. GAs attempt to
implicitly capture dependencies between parameters and
the solution quality by maintaining a population of solu-
tions. Samples are generated by applying randomized
recombination operators to high-performance members of
the population [Goldberg, 1989][Holland, 1975][De Jong,
1975]. Unlike the models explored in this paper, however,
no explicit information is kept about which groups of
parameters contribute to the quality of candidate solutions.
One of the first steps towards making the GA’s model more

explicit was the “Bit-Based Simulated Crossover (BSC)”
operator [Syswerda,1993]. Instead of combining pairs of
solutions, population-level statistics were used to generate
new solutions. The BSC operator works as follows. For
each bit position1, the number of members which contain a
one in that bit position is counted. Each member’s contribu-
tion is weighted by its fitness with respect to the target opti-
mization function. The same process is used to count the
number of zeros. Instead of using traditional crossover
operators to generate new solutions, BSC generates new
query points by stochastically assigning each bit’s value by
the probability of having seen that value in the previous
population (the value specified by the weighted count)
[Syswerda, 1993].

BSC used a population of solutions from which the sam-
pling statistics were entirely rederived after each genera-
tion. In contrast, Population-based incremental learning
(PBIL) incrementally adjusts its sampling statistics after
each generation [Baluja, 1995]. Rather than being based on
population-genetics, PBIL is very similar to a cooperative
system of discrete learning automata in which the automata
choose their actions independently, but all automata receive
a common reinforcement dependent upon all their actions
[Thathachar & Sastry, 1987]. Unlike most previous studies
of learning automata, which have commonly addressed
optimization in noisy but very small environments, PBIL
was used to explore large deterministic spaces. The algo-
rithm maintains a real-valued probability vector from
which solutions are generated. As search progresses, the
values in the probability vector are gradually shifted to rep-
resent high-evaluation solution vectors. This algorithm will
be described in detail in Section 4.

Note that the probabilistic model created in PBIL is
extremely simple.There are no inter-parameter dependen-
cies modeled; each bit is examined independently.
Although this simple probabilistic model was used, PBIL
was very successful when compared to a variety of stan-
dard genetic algorithm and hillclimbing algorithms on

1. Note that in this paper, we will discuss combinatorial optimization
with the solutions represented as binary vectors. However, all of the
results can be trivially extended to higher cardinality alphabets.

Copyright (c) 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

The official version of this paper has been published by
American Association of Artificial Intelligence (http://www.aaai.org).
Paper appears in AAAI-98.



numerous benchmark and real-world problems [Baluja,
1997][Greene, 1996]. A more theoretical analysis of PBIL
can be found in [Juels, 1997][Kvasnickaet al.,
1995][Hohfeld & Rudolph, 1997].

The most immediate way in which the PBIL algorithm can
be improved is to create mechanisms that capture inter-
parameter dependencies. One of the first extensions to
PBIL along these lines was termedMutual Information
Maximization for Input Clustering (MIMIC)[De Bonetet
al., 1997]. MIMIC captured a heuristically chosen set of
the pairwise dependencies between the solution parame-
ters. MIMIC maintained the top N% of all previously gen-
erated solutions, from which it calculated pair-wise
conditional probabilities. MIMIC used a greedy search to
generate a chain in which each variable was conditioned on
the previous variable. The first variable in the chain, X1,
was chosen to be the variable with the lowest unconditional
entropy H(X1). When deciding which subsequent variable
X i+1 to add to the chain, MIMIC selected the variable with
the lowest conditional entropy H(Xi+1 | Xi). As with PBIL,
after creating the full chain, it randomly generated more
samples from the distribution specified by this chain. The
entire process was then repeated.

In [Baluja & Davies, 1997a], MIMIC’s probabilistic model
was extended to a larger class of dependency graphs: trees
in which each variable is conditioned on at most one par-
ent. As shown in [Chow and Liu, 1968], a simple algorithm
can be employed to select theoptimal tree-shaped network
for a maximum-likelihood model of the data. In experimen-
tal comparisons, MIMIC’s chain-based probabilistic mod-
els typically worked significantly better than PBIL’s
simpler models. The tree-based graphs typically worked
significantly better than MIMIC’s chains. Thus, using more
accurate probabilistic models increased the probability of
generating new candidate solutions in promising regions of
the search space. Tree-Based graphs are the basis of the
probabilistic models used in this study, and will be returned
to in Section 2.

An extension of pair-wise dependency modeling is arbi-
trary dependency modeling. Bayesian networks [Pearl,
1988] are a popular method for efficiently representing
dependencies and independencies in probability distribu-
tions. Bayesian networks are directed acyclic graphs in
which each variable is represented by a vertex, and depen-
dencies between variables are encoded as edges. As in the
tree-based algorithm, the networks model probability dis-
tributions of the form shown in Equation (1).

(1)

where is the set of Xi’s parents in B andn is the num-

ber of nodes. The tree-shaped networks described in the
previous paragraph are a special case of Bayesian networks
in which each node in the graph has at most one parent.
PBIL may be thought of as employing a degenerate Baye-
sian network in which the graph has no edges. Unfortu-
nately, when we move toward models in which variables
can have more than one parent, the problem of finding an
optimal network with which to model a set of data becomes
NP-complete [Chickering,et al., 1995]. However, search
heuristics have been developed for automatically learning
Bayesian networks from data (for example [Heckerman,et
al., 1995]). A common approach is to perform hill-climb-
ing over network structures, starting with a relatively sim-
ple network. This approach was used for combinatorial
optimization in [Baluja & Davies, 1997b]. The empirical
results with Bayesian networks showed a noticeable
improvement over tree-based optimization in some prob-
lems that exhibit complicated dependencies. However, this
benefit is achieved through significantly more computa-
tional effort. In other problems in which only a few depen-
dencies must be modeled, the tree-based model performed
as well as the Bayesian network.

Thus far, all of the approaches that model dependencies
have been used for optimizing relatively small problems

(with search spaces smaller than 2256). Extending these
models to large problems is challenging because of the
severe computational expense of modeling the dependen-
cies between a large number of variables. On the other
hand, when using less computationally expensive search
algorithms, it is a common procedure to restart them with
random initialization points in the hope that they will find
better local optima. After performing several such restarts,
there is information to be gained by analyzing the various
local optima found in multiple search runs and looking for
features they have in common.

One learning-based approach to selecting good starting
points for hillclimbing was presented in [Boyan & Moore,
1997]. The algorithm attempts to map a set of user-supplied
features of the state space to a single value. This value rep-
resents the quality of solutions that were found by hill-
climbing runs passing through states with similar features.
The algorithm then uses this “value function” to select
promising starting points for future hillclimbing runs.

In this paper, we utilize probabilistic methods to model the
solutions obtained by faster search algorithms. This con-
trasts with the approach of [Boyan and Moore, 1997] since
an explicit probabilistic model is used to model only the
top-performing solutions gathered through all of the fast
searches. Further, the model is based directly on the param-
eters of the solution encoding;no high-level attributes of
the problem are provided to the algorithm.These models

PB X1 … Xn,,( ) PB Xi ΠXi 
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are then sampled to intelligently select new starting points
for further searches. The resulting algorithm, termed
COMIT (CombiningOptimizers withMutual Information
Trees), gains most of the benefits of modeling the depen-
dencies in the search space at a significantly reduced com-
putational cost.

In the next section, we describe the COMIT algorithm, and
give details of how the probabilistic model is created. In
Section 3, we illustrates the use of COMIT with search
techniques, such as hillclimbing, that maintain only a sin-
gle solution from which new solutions are generated. Sec-
tion 4 demonstrates how COMIT can be integrated with
algorithms that themselves model probability distributions
of possible solutions, such as PBIL. Extensive empirical
results are provided in both sections. Finally, Section 5 pre-
sents conclusions and directions for future research.

2   The COMIT Algorithm

The basic premise of the COMIT algorithm is that probabi-
listic models can be used to intelligently select starting
points for fast search algorithms such as hillclimbing or
PBIL. The model is created based upon good solutions
gathered from all previous searches. The general procedure
is shown in Figure 1.

Specifically, once we have chosen a model P’(X1...Xn) of
the set,S, of previously found good solutions, P’ is used to
stochastically generate a number of candidate solutions.
The best of these newly generated solutions are used to ini-
tialize the fast-search algorithm. Once the fast-search has
terminated, up to MAX_INFLUENCE solutions inS are
replaced by better solutions generated during the run; the
size of S is kept constant. The MAX_INFLUENCE param-
eter is important, and must be set by considering the size of
S. If MAX_INFLUENCE is set too high, too much weight
may be given to a single fast-search run, resulting in prema-
ture convergence. If it is too low, then previously found
good solutions may not carry enough weight; this causes
the algorithm to put too much emphasis on random explo-
ration. The process is repeated until a termination condition
is met. The next section describes in detail how the proba-
bilistic model of the good solutions is generated.

2.1 Modeling Dependencies in the COMIT algorithm

Suppose we have a set of good solutions,S, found from
previous fast-search runs. We wish to discover what inter-
parameter dependencies are exhibited by the bit strings in
S, and use this information to generate good starting points
for future hillclimbing runs. To do this, we try to model a
probability distribution P(X) = P(X1, ..., Xn) over bit-
strings of length n, where X1, ..., Xn are variables corre-
sponding to the values of the bits. We try to learn a simpli-

fied model P’(X1, ..., Xn) of the empirical probability
distribution P(X1, ..., Xn) entailed by the bitstrings in S. As
in [Baluja & Davies, 1997a], we restrict our model
P′(X1, ..., Xn) to the following form:

(2)

where  is Xi’s single “parent” variable. We require that

there be no cycles in these “parent-of” relationships: for-
mally, there must exist some permutationm = (m1, ..., mn)

of (1, ..., n) such that  for all

i. (The “root” node, XR, will not have a parent node; how-
ever, this case can be handled with a “dummy” node X0

such that P(XR | X0) is by definition equal to P(XR).) In
other words, we restrict P′ to factorizations representable
by Bayesian networks in which each node (except XR) has
one parent,i.e., tree-shaped graphs. As described earlier,
more complete Bayesian Networks could be used; however,
trees were used because of computational limitations.

A method for finding the optimal model within these
restrictions is given in [Chow and Liu, 1968]. A complete
weighted graphG is created in which every variable Xi is
represented by a corresponding vertex Vi, and in which the
weight Wij  for the edge between vertices Vi and Vj is set to
the mutual information I(Xi,Xj) between Xi and Xj:

(3)

The empirical probabilities of the form P(Xi = a) and
P(Xi = a, Xj = b) are computed directly fromS for all com-
binations of i, j, a, and b (a & b are binary assignments to
X i & X j). Once these edge weights are computed, the max-
imum spanning tree ofG is calculated, and this tree deter-

Figure 1: Overview of the COMIT algorithm.

• Initialize dataset S with random solutions from uniform distribution

• While termination condition is not met:
 • Create probabilistic model ofS.
 • Use model to stochastically generateK solutions. Evaluate new solutions.
 • Execute fast-search procedure, initialized with the best solutions generated

from the model.
 • Replace up toMAX_INFLUENCE bitstrings in S with better bitstrings

 found during the fast-search run just executed.

USER DEFINED CONSTANTS (values used in this study)

|S|: Constant size of the dataset S (1000)

MAX_INFLUENCE: max number of bitstrings to replace inS with better
strings from a single fast-search run (100).
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mines the structure of the network used to model the
original probability distribution. Since the edges inG are
undirected, a decision must be made about the directional-
ity of the dependencies with which to construct P′; how-
ever, all such orderings conforming to the restrictions
described earlier model identical distributions.

Among all trees, this produces a tree that maximizes:

(4)

this minimizes the Kullback-Leibler divergence, D(P||P′),
between P (the true empirical distributions exhibited byS)
and P′ (the distribution modeled by the network):

(5)

As shown in [Chow & Liu, 1968], this produces the tree-
shaped network that maximizes the likelihood ofS, under
the assumption that the members ofS were generated inde-
pendently and identically distributed. Our optimization
algorithm violates this assumption since many highly cor-
related members are added to the dataset from any single
fast-search run; however, the use of the
MAX_INFLUENCE parameter limits this correlation.

This tree generation algorithm, summarized in Figure 2,

runs in time O(|S|*n2), where|S| is the size of S andn is the
number of bits in the solution encoding.

3   Using COMIT with Hillclimbing

This section illustrates the use of COMIT with search tech-
niques, such as hillclimbing, that maintain a single solution
from which new solutions are generated. The algorithm
uses a tree-shaped probabilistic network,T, to model a set,
S, of previously found good solutions.T is then sampled to
generateK new solutions, of which the highest-evaluation
solution is used as the starting point of a hillclimbing run.
Up to MAX_INFLUENCE solutions inS are replaced

with better solutions from this run, and the process is
repeated. The algorithm is summarized in Figure 3.

3.1 Algorithm Details

Hillclimbing (HC): The baseline search technique is next-
ascent stochastic hillclimbing. The hillclimbing algorithm
used has three notable properties. First, it allows moves to
solutions with higher or equal evaluation; this is extremely
important for hillclimbing to work well in many compli-
cated spaces, since this allows it to explore plateaus. Sec-
ond, before restarting, up toPATIENCE evaluations are
allowed that are worse than the best evaluation seen so far
in the run. Evaluations which are equal to the best evalua-
tion seen so far are not counted towards thePATIENCE
count. This parameter has a large impact on the effective-
ness of hillclimbing in large search spaces. Therefore, for
each problem, multiple settings were tried for this parame-
ter. The range of values was (1*|X|) to (10*|X|), where |X|
is the length of the solution encoding. The results with the
best setting of thePATIENCE parameter are reported.
Third, the hillclimbing algorithm used is a next-ascent hill-
climber; as soon as a better solution is found, it is accepted.
This contrasts with steepest-ascent hillclimbing, which
searches all possible single-bit changes and accepts the one
with the largest improvement. On the problems explored
here, steepest ascent hillclimbing did not work as well.

COMIT: We experiment with two versions of the COMIT
algorithm: one withK set to 100 (termed COMIT-100),
which samples the tree 100 times before selecting the best
point; and one with K=1000 (termed COMIT-1000). These
evaluations are counted against the total allowed.

Augmented Hillclimbing (AHC): The fact that COMIT-K
examinesK points before choosing one to use for hill-
climbing is a possible confounding factor in determining
how effective COMIT is in comparison to HC. To ensure
that it is not simply the process of selecting theseK before
hillclimbing that gives performance gains, we augment hill-
climbing as follows. Before the beginning of each run,
AHC-K examinesK randomly chosen points from which it
selects the best one as the starting position. (The difference

I Xm i( ) Xm p i( )( ),( )
i 1=

n

∑
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P′ X( )
---------------log
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Figure 2: Procedure for generating the dependency tree.

Generate an optimal dependency tree:
• Set the root to an arbitrary bit Xroot
• For all other bits Xi, set bestMatchInTree[Xi] to Xroot.
• While not all bits have been added to the tree:

• Of all the bits not yet in the tree, pick bit Xadd with the maximum
mutual information I(Xadd, bestMatchInTree[Xadd]),

usingS to estimate the relevant probability distributions.
• Add Xadd to tree, with bestMatchInTree[Xadd] as parent.
• For each bit Xout not in the tree,

if I(X out, bestMatchInTree[Xout]) < I(Xout, Xadd).
 then set bestMatchInTree[Xout]=Xadd.

Figure 3: Overview of the COMIT algorithm with hillclimbing.

• Initialize dataset S with random solutions from uniform distribution

• While termination condition is not met:
 • Create a tree-shaped probabilistic networkT that modelsS.
 • UseT to stochastically generateK solutions. Evaluate theseK new solutions.
 • Start hillclimbing run initialized with the single best of theK solutions.
 • Replace up toMAX_INFLUENCE bitstrings in S with better bitstrings

 found during the hillclimbing run just executed.

USER DEFINED CONSTANTS (values used in this study)

|S|: Constant size of the dataset S. (1000)

MAX_INFLUENCE: max number of bitstrings to replace inS with better
strings from a single fast-search run (100).



between this and COMIT is that COMIT samplesK points
from the dependency tree). Two versions of AHC are
examined: AHC-100, and AHC-1000.

Note that all of the parameters of all of the algorithms were
tuned on the 100-city TSP problem, and were held constant
for all runs and all problems.

3.2 Results

For each algorithm on each problem, we try multiple set-
tings of the PATIENCE parameter. The setting of the
PATIENCE parameter that gives the best result is reported
here. The results reported are the average of at least 25 runs
of the entire algorithm. Each algorithm is given 200,000
function evaluations on each problem. Because of space
limitations, the full description of the problems cannot be
given here. However, brief descriptions are given in Appen-
dix A. The results are shown in Table I. In the first line of
each cell in the table, the numerical results are presented. In
the second line, the rank (1[best]..5[worst]) of each algo-
rithm is given. Also given for HC, AHC-100 and AHC-
1000 is whether the difference between the results achieved
is significantly different from that of COMIT-100 and
COMIT-1000, respectively. The significance is measured
by the Mann-Whitney test (a non-parametric equivalent to
thet-test) at the 95% confidence interval.

In almost every problem examined, COMIT significantly
improves the performance over hillclimbing. Only in one
problem (200-city TSP) did one of the COMIT runs
(COMIT-100) not perform as well as HC. However, the dif-
ference in performance was not statistically significant.

To provide some intuition about how the COMIT algorithm
progresses, Figure 4 shows the values of each evaluation
performed by the HC and COMIT-1000 algorithm in the
TSP domain. There are four features that should be noticed.
First, the spikes in the evaluations correspond to the begin-
ning of hillclimbing runs. In the COMIT graph, the spikes
also represent theK samples generated by sampling the
tree. Second, for the COMIT algorithm, the random initial
samples in the dataset S were entirely removed by evalua-
tion #90,000 (this approximately corresponds to the num-
ber of evaluations used in the first 10 hillclimbing runs;
each run contributed 100 samples to the dataset, and the
size of S is 1000). Third, the magnitude of the spikes in the
COMIT plot gradually decreases; this corresponds to the
COMIT algorithm learning to seed the hillclimbing runs
with high-quality solutions. Fourth, and most importantly,
the final solutions found at each hillclimbing run have
improved over standard hillclimbing, even before the HC
runs are started at noticeably better solutions. This indi-
cates that by using the interparameter dependency models
to generate starting points, the hillclimbing runs are started
in basins of the search space that lead to high-evaluation
solutions.

Table I:  COMIT with Hillclimbing

Size of
Problem
in Bits
(Goal:

MAX or
MIN)

HC
(≠C100,
≠C1000)

(95% Conf.
Interval)

AHC-100
(≠C100,
≠C1000)

(95% Conf.
Interval)

AHC-1000
(≠C100,
≠C1000)

(95% Conf.
Interval)

COMIT-
100

COMIT-
1000

Knapsack
512 elem.

512
(MAX)

3238
5 (Y,Y)

3377
3 (Y,Y)

3335
4 (Y,Y)

6684
1

6259
2

900
(MAX)

Knapsack
900 elem.

3403
5 (Y,Y)

3418
4 (Y,Y)

3488
3 (Y,Y)

7733
1

7182
2

Knapsack
1200 elem.

1200
(MAX)

5226
5 (Y,Y)

5270
4 (Y,Y)

5280
3 (Y,Y)

13052
1

12829
2

Jobshop-enc 1
10x10

500
(MIN)

998
5 (Y,Y)

988
4 (Y,Y)

982
3 (N,Y)

978
2

970
1

Jobshop-enc 2
10x10

700
(MIN)

965
5 (Y,Y)

961
4 (Y,Y)

957
3 (N,N)

954
2

953
1

700
(MIN)

Jobshop-enc 2
20x5

1207
5 (Y,Y)

1201
4 (Y,Y)

1199
3 (N,N)

1196
2

1196
1

Binpack (10-3)
8 bins, 168 el.

504
(MIN)

1.70
5 (N,Y)

1.58
3 (N,N)

1.62
4 (N,N)

1.56
2

1.45
1

800
(MIN)

Binpack (10-2)
16 bins, 200 el.

1.54
5 (Y,Y)

1.50
4 (Y,Y)

1.38
3 (Y,Y)

1.11
1

1.24
2

Summation
Cancellation

675
(MIN)

64
5 (Y,Y)

61
4 (Y,Y)

59
3 (Y,Y)

54
2

52
1

TSP
100 city

700
(MIN)

1629
5 (Y,Y)

1599
4 (Y,Y)

1573
3 (Y,Y)

1335
1

1336
2

TSP
200 city

1600
(MIN)

15119
3 (N,N)

15286
5 (N,N)

15100
1 (N,N)

15189
4

15117
2

1200
(MIN)

TSP
150 city

11451
5 (Y,Y)

11247
3 (Y,Y)

11290
4 (Y,Y)

9812
2

9077
1

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0.00 100.00 200.00 300.00 400.00
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3.00
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4.50
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6.00

0.00 100.00 200.00 300.00 400.00

Figure 4: These graphs show the values of every evaluation
performed by the HC (top) and COMIT (bottom) algorithms
for the TSP domain. The object is to minimize the tour length.
Note that these runs are extended to 400,000 evaluations.

Evaluation Number * 103



4   Using COMIT with PBIL

The previous section demonstrated that relatively complex
probabilistic models can be used in conjunction with search
techniques, such as hillclimbing, that maintain only a sin-
gle solution from which new solutions are generated. In
this section, we examine how to integrate COMIT with
other algorithms that themselves model probability distri-
butions of possible solutions. As described in Section 1,
PBIL only maintains unconditional probabilities; no inter-
parameter dependencies are modeled. A vector,P, specifies
the probability of generating a 1 in each bit position. Ini-
tially, all values inP are set to 0.5. A number of solution
vectors are generated by stochastically samplingP; each bit
is sampled independently of all the others. The probability
vector is then moved towards the generated solution vector
with the highest evaluation according to Equation 6. The
update rule is similar to the updates used in unsupervised
competitive learning [Hertz,et al. 1991].

(6)

ProbabilityVectort,i is the value of the probability vector at
time t, for parameter i. BestSolutionVectori is the value of
parameteri in the vector being used to update the probabil-
ity vector. α is a learning rate parameter that determines
how much each new datapoint changes the value of the
probability vector. The basic version of the PBIL algorithm
and its parameters are shown in Figure 5. The final result of
the PBIL algorithm is the best solution generated through-
out the search. The version used here extended this as sug-
gested in [Baluja, 1997]: first, a mutation operator was
added. This randomly selects positions in the probability
vector to alter. The motivation for using a mutation opera-
tor is to preserve diversity in the generated solutions; there-
fore, the mutation operator always moves the probabilities
to higher-entropy states (closer to 0.5). Second, instead of
only moving towards the best solution, the probability vec-
tor was also moved away from the worst solution in the
positions in which the best and worst solutions differed.

In the experiments conducted with COMIT in this section,
three algorithms were compared. The first algorithm, which
we use as a baseline, is PBIL. The parameters are set as fol-
lows: α=.15, M=1, N=50, MUT_PROB = 0.02,
MUT_SHIFT= 0.05; these parameters are also used for the
second and third algorithms. The second algorithm tested is
COMIT-PBIL. COMIT-PBIL is identical to the version of
COMIT used for hillclimbing except for the following dif-
ferences: PBIL is used instead of hillclimbing; each PBIL
run is terminated after 5000 evaluations without improve-
ment. At the beginning of a PBIL run, each entry of the
probability vector,P, is initialized to the average value of

that position in the top 10% of the solutions generated by
sampling the tree-based model 1000 times. As described in
Section 2, the tree-based model is created from the data-set
S, which contains the good solutions returned from multi-
ple PBIL searches. As before, the size of S is 1000 and
MAX_INFLUENCE is 100. The algorithm is shown in
Figure 6. The third algorithm tested is PBIL with restarts;
after 5,000 evaluations are conducted with no improve-
ment, the algorithm is restarted. This test is to ensure that it
is the probabilistic modeling (of COMIT) that is responsi-
ble for the increase in performance, not simply the fact that
PBIL is being restarted. The parameters for all of the algo-
rithms were tuned on the 100-city TSP problem, and no
parameter changes were made for any other problem.

ProbabilityVectort 1+ i,
1 α–( ) ProbabilityVectort i,⋅ α BestSolutionVectori⋅+

=

****** Initialize Probability Vector ******
for i :=1 to LENGTH do P[i] := 0.5;

while (NOT termination condition)
***** Generate Samples *****
 for i :=1 to N do

solution_vectors[i] := generate_vector_with_probabilities (P);
evaluations[i] :=Evaluate_Solution (solution_vectors[i]);

best_solution_vectors =
sort_solutions_best_to_worst (solution_vectors,evaluations);

**** Update Probability Vector towards best solutions****
for i := M downto 1 do

for j :=1 to LENGTH do
P[j] := P[j] * (1.0 - α) + best_solution_vectors[i][j]* (α);

**** Mutation - Always move towards 0.5 ****
for i := 1 to LENGTH do

if (random (0,1) < MUT_PROB) then
if (P[i] > 0.5) P[i] := P[i]*(1.0 - MUT_SHIFT);
else P[i] := P[i]*(1.0 - MUT_SHIFT) + MUT_SHIFT

Return the best solution generated throughout the entire search.

PBIL CONSTANTS:
N: # of vectors generated before update of the probability vector.
α: the learning rate, how fast to exploit the search performed.
M: number of vectors in the population that are used to update P.
LENGTH: # of bits in the solution encoding (problem dependent).
MUT_PROB: probability of “mutating” each bit position.
MUT_SHIFT: amount a mutation alters the value in the bit position

Figure 5: Basic PBIL algorithm for a binary alphabet.

Figure 6: Overview of the COMIT algorithm for PBIL.

• Initialize dataset S with random solutions from uniform distribution

• While termination condition is not met:
 • Create a tree-shaped probabilistic networkT that modelsS.
 • UseT to stochastically generateK solutions. Evaluate new solutions.
 • Select topC% of theK generated solutions.
• Initialize PBIL’s P vector to unconditional probabilities in selected solutions.
 • Execute PBIL run. Replace up toMAX_INFLUENCE bitstrings in S

with better bitstrings  found during the PBIL run just executed.

USER DEFINED CONSTANTS (values used in this study)

|S|: Constant size of the dataset S. (1000)

MAX_INFLUENCE: max number of bitstrings to replace inS with better
strings from a single fast-search run (100).

C: Percentage ofK generated solutions used to initializeP. (10)



The results are shown in Table II. Each experiment was
given 600,000 evaluations. The results reported are the
average of at least 50 experiments per algorithm, per prob-
lem. In the first line of each cell in the table, the numerical
results are presented. In the second line, the rank
(1[best]..3[worst]) of each algorithm is given. Also given
for PBIL with no-restarts and random restarts is whether
the difference between the results is significantly different
from those of COMIT-PBIL.

In summary, in the majority of the problems examined, the
COMIT-PBIL approach was significantly better than PBIL,
both with and without restarts. This is encouraging, since
PBIL has itself often outperformed standard genetic algo-
rithms and hillclimbing techniques on similar problems
[Baluja, 1997]. Two exceptions to this are the binpacking
problem and the summation cancellation problem. In both
of these problems, COMIT’s choice of restarting points did
not hurt performance; however, not restarting PBIL at all
led to better performance.

5   Conclusions & Future Work

We have shown that probabilistic models can be used to
combine the information gathered from runs of fast search
algorithms. By using a model of the interparameter depen-
dencies in previously found good solutions, new starting
points for the fast search algorithm are chosen. In most of
the problems examined, this has led to the discovery of sig-

nificantly better final solutions.

One can imagine that COMIT lies in the middle of a con-
tinuous spectrum, with the ends representing never using a
probabilistic model (as is done with hillclimbing) and
always using a probabilistic model (as is done in [Baluja &
Davies, 1997]). In the Tree-based algorithm described in
[Baluja & Davies, 1997a], all of the candidate generation is
done by sampling the model, and the high-evaluation points
are added directly back intoS. The empirical results with
COMIT have demonstrated that even infrequent use of the
probabilistic model is advantageous. An immediate direc-
tion for future research is to determine if there is any per-
formance loss incurred by using the complex probabilistic
models only for the initialization of searches when com-
pared to always using the probabilistic model (which is
extremely computationally expensive). In the preliminary
tests conducted, the COMIT algorithm was often able to
perform as well as the Tree-Based algorithm. Quantifying
the difference in performance and computational expense is
currently being researched.

Because different search algorithms have different sam-
pling procedures, each may explore different regions of the
solution space. By allowing all of the search algorithms to
contribute solutions to the dataset from which dependen-
cies are modeled, COMIT provides a simple method for
combining multiple different search algorithms.

Since the probabilistic model is updated infrequently by
COMIT, it may be feasible to replace the dependency-tree
model with more sophisticated but computationally expen-
sive models, such as general Bayesian networks. It will be
interesting to determine if automatically learning networks
with hidden variables [Friedman, 1997] would improve
optimization performance. It will also be interesting to
examine whether it is possible to explicitly use the fact that
the samples modeled arenot independent, as is assumed by
the probabilistic models used here.

We illustrated how to incorporate COMIT with PBIL and
hillclimbing. Although not reported here, we have used
COMIT to restart genetic algorithm (GA) based searches.
This combination improved the performance over the GA
alone. However, neither the GA nor COMIT-GA were typi-
cally able to perform as well as the hillclimbing and PBIL
approaches presented here. COMIT requires no change to
be used with other search algorithms such as simulated
annealing or TABU search [Glover, 1989]. In addition to
these general search techniques, it can also be used with
randomized search techniques designed to address specific
problems, such as WALKSAT [Selmanet. al, 1996].
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APPENDIX A: Problem Descriptions
Due to space limitations, only brief descriptions of the problems
are given here. Details can be found in the referenced reports.

1. Traveling Salesman Problems (TSP)

The encoding used in this study requires a bit string of size
Nlog2N bits, where N is the number of cities in the problem. Each

city is assigned a substring of length log2N bits; the value of these

bits determines the order in which the city is visited. See
[Syswerda, 1989] for details. Three problem were attempted: 100,
200 and 150 city.

2. Jobshop Scheduling Problems

Two standard test problems are attempted, a 10-job, 10-machine
problem and a 20-job, 5-machine problem. A description of the
problems can be found in [Muth & Thompson, 1963]. The first
problem is encoded in two ways. The first encoding is commonly
used with genetic algorithms; see [Fanget. al, 1993].

The second encoding [Baluja, 1995] is very similar to the encod-
ing used in the Traveling Salesman Problem. The drawback of this
encoding is that it uses more bits than the previous one. Nonethe-
less, empirically, it revealed improved results. Each job is
assigned M entries of size log2(J*M) bits. The total length of the

encoding is J*M*log2(J*M). The value of each entry (of length

log2(J*M)) determines the order in which the jobs are scheduled.

The job that contains the smallest valued entry is scheduled first,
etc. The order in which the machines are selected for each job
depends upon the ordering required by the problem specification.

3. Knapsack Problem

In this problem, there is a bin of limited capacity, andM elements
of varying sizes and values. The goal is to select the elements that
yield the greatest summed value without exceeding the capacity of
the bin. A penalty is given to solutions that exceed the maximum
capacity; the encoding was taken from [Baluja, 1995]. Three ver-
sions of the problem were attempted with 512, 900, and 1200 ele-
ments.

4. Bin Packing/Equal Piles

In this problem there areN bins of varying capacities andM ele-
ments of varying sizes. The goal is to pack the bins with elements
as tightly as possible, so that the size of the bins closely matches
the total size of the elements assigned to the bins. The solution is
encoded in a bit string of lengthM*log2N. Each element is

assigned to a bin (which is encoded in log2N bits). These prob-

lems were generated so that there was an assignment of elements
which matched the capacities of the bins exactly. Two version of
this problem are explored, the first with 8 bins and 168 elements,
and the second with 16 bins and 200 elements.

5. Summation Cancellation

In this problem, there is very strong parameter interdependence.
The parameters in the beginning of the solution string have a large
influence on the quality of the solution. The goal is to minimize
the magnitudes of cumulative sums of the parameters. The prob-
lem had 75 parameters, and each parameter was represented with
9 bits, encoded in standard base-2, with the values uniformly
spaced between -2.56 and +2.56. It is set as a maximization prob-
lem by using the reciprocal of the function.
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