
NP-Completeness of Searches for Smallest Possible Feature SetsScott Davies and Stuart RussellComputer Science DivisionUniversity of CaliforniaBerkeley, CA 94720fsdavies,russellg@cs.berkeley.eduAbstractIn many learning problems, the learning systemis presented with values for features that are ac-tually irrelevant to the concept it is trying tolearn. The FOCUS algorithm, due to Almuallimand Dietterich, performs an explicit search for thesmallest possible input feature set S that permitsa consistent mapping from the features in S tothe output feature. The FOCUS algorithm canalso be seen as an algorithm for learning determi-nations or functional dependencies, as suggestedin [6]. Another algorithm for learning determina-tions appears in [7]. The FOCUS algorithm hassuperpolynomial runtime, but Almuallim and Di-etterich leave open the question of tractability ofthe underlying problem. In this paper, the prob-lem is shown to be NP-complete. We also de-scribe brie
y some experiments that demonstratethe bene�ts of determination learning, and showthat �nding lowest-cardinality determinations iseasier in practice than �nding minimal determi-nations.Proof of NP-CompletenessDe�ne the MIN-FEATURES problem as follows: given aset X of examples (which are each composed of a a binaryvalue specifying the value of the target feature and a vectorof binary values specifying the values of the other features)and a number n, determine whether or not there existssome feature set S such that:� S is a subset of the set of all input features.� S has cardinality n.� There exist no two examples in X that have identicalvalues for all the features in S but have di�erent valuesfor the target feature.We show that MIN-FEATURES is NP-complete by re-ducing VERTEX-COVER to MIN-FEATURES.1 TheVERTEX-COVER problem may be stated as the question:given a graph G with vertices V and edges E, is there asubset V 0 of V , of size m, such that each edge in E isconnected to at least one vertex in V 0? We may reducean instance of VERTEX-COVER to an instance of MIN-FEATURES by mapping each edge in E to an example inX , with one input feature for every vertex in V .1In [8], a \proof" is reported for this result by reduc-tion to set covering. The proof therefore fails to show NP-completeness.

A

B

C

D

E

F

Figure 1: An example graph for VERTEX-COVER.Start with one example with 0's for all input features|one input for every vertex in V|and a 0 for an output.Call this the \null example." Then, for each edge Ei in E,add one example that has a value of 1 for the output and 0'sfor all input features except the two inputs correspondingto the two vertices to which Ei is connected; for these twoinputs, set the input values to 1's. Call these examplesthe \edge-generated" examples. Finally, use the set sizeparameter m in the VERTEX-COVER problem as the setsize parameter n for the MIN-FEATURES problem. Fig-ure 1 shows a a graph with labelled vertices, and Figure 2shows the corresponding MIN-FEATURES problem.If there is an input set S of size n that satis�es the gen-erated MIN-FEATURES problem, then there is a vertexcover V 0 of size m = n that solves the VERTEX-COVERproblem: simply let V 0 contain exactly those vertices thatcorrespond with the input features contained in S. Thisworks because for any edge Ei in the graph, S must con-tain at least one of the two input features correspondingto those vertices to which Ei is connected, since this con-straint must have been met in order to prevent the examplegenerated by Ei from matching the \null example" on allthe features in S.Conversely, if there is a vertex set V 0 of size m thatsolves an instance of VERTEX-COVER problem, then

A B C D E F X

0 0 0 0 0 0 0
1 1 0 0 0 0 1
0 1 1 0 0 0 1

1 1 0 00 0 1
1
1
1
1
1
1
1

0 0 0 1 1 0
0 0 0 0 1 1
1 0 1 0 0 0
0 0 1 0 1 0
1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 1

null example

edge−generated
examples using
adjacency matrixFigure 2: The examples for the corresponding MIN-FEATURES.there is a solution S of size n = m to the generated MIN-FEATURES problem|namely, the input set S that con-tains exactly those input features corresponding to the ver-tices in V 0. Since V 0 is a solution, there must be at leastone vertex in V 0 that is connected to any given edge inthe graph G; this means that, for any \edge-generated"example in the MIN-FEATURES problem, at least oneof the input features that have values of 1 must be in S.This prevents any \edge-generated" examples frommatch-ing the \null example" on all inputs in S, and thus ensuresthat S is a solution to the the MIN-FEATURES problem.Since the generated MIN-FEATURES problem has a so-lution if and only if the original VERTEX COVER prob-lem has a solution, VERTEX-COVER has been reduced toMIN-FEATURES; the reduction described above is com-putable in polynomial time. Thus, MIN-FEATURES isNP-hard.MIN-FEATURES is obviously in NP, since we can tellwhether or not any given input feature set S is a solution inpolynomial time by hashing: for each example Xi, use thevalues of the input features of Xi that are in S to producea unique key for the table entry, and store the value ofXi's output feature as the data for the table entry. Iftwo entries have the same key but di�erent data, S is notsolution; otherwise, it is a solution.Therefore, MIN-FEATURES is NP-complete. Not onlydoes the problem of �nding the smallest relevant featureset S appear intractable, but we cannot even determinethe minimum size of such a set.It is important to note that the proof that MIN-FEATURES is NP-complete relies on the generation ofproblem instances in which all features are relevant. Ingeneral, the search for the smallest possible set will taketime non-polynomial (unless P = NP) in the number of in-put features; however, if it turns out that only a few inputsare actually relevant, our reduction does not say that anyalgorithmmust take time that is non-polynomial in the to-tal number of features. Hence, while the general problemis intractable, it may still be feasible to use a search alongthe lines we have been describing if we suspect that onlya logarithmic fraction of the inputs are relevant|we canorder the search from smaller sets to larger sets, and abortthe search if we were mistaken in our suspicions.

The Importance of RelevanceOur algorithm for identifying and using relevant featuresis as follows. As the examples are processed, we maintaina list L of all the possible feature sets S, of the lowest pos-sible cardinality n, such that any examples seen so far thatmatch on the features in S have identical output featurevalues. Every time we encounter a new example, we checkthe validity of each set S in L (by using a hash table as de-scribed above), throwing out those sets that are no longervalid. If the list consequently becomes empty, we increasen by 1, and add to the list all feature sets S of the newcardinality n0 = n+ 1 that are now valid.When asked to predict an output for a given input vec-tor, an algorithm M maintaining the list L may pick arandom set S from L, pass on the features in S to anyother machine learning algorithmM 0, and return the valuereturned by M 0. Alternatively, it may call M 0 once forevery set S in L and return the value predicted most of-ten, or return a distribution based on the values predicted.This takes more time, however, and although the resultinglearning curves are more predictable, they often have thesame averages.Using a basic implementation of Quinlan's ID3 decision-tree learning algorithm [5] for M 0, we tested the above al-gorithm on random boolean functions of 16 boolean vari-ables, only 5 of which were relevant. Three trials wereperformed, each with a di�erent random function; for eachtrial, up to 150 of the 3200 examples generated were usedfor training, while the rest were used for testing. Figure 3shows the resulting learning curve, and contrasts it withthe learning curve that was generated when ID3 was useddirectly on all of the feature values of the same three datasets. It is clear that the system learned much more quicklywhen we used a FOCUS-like algorithm to �lter out featureswhich could conceivably be irrelevant.Some papers ([7], for example) have put forward algo-rithms for determining all feature sets S that are \mini-mal" in the sense that any proper subset of S would beinsu�cient to permit a consistent mapping from the fea-tures in the proper subset to the output feature. The list
0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set size

With determination learning
Plain ID3

Figure 3: Learning curves for ID3 with feature set selectionversus raw ID3 (sixteen features, �ve relevant).

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set size

Minimal determinations
Lowest-cardinality determinationsFigure 4: Number of \minimal" vs. number of lowest-cardinality setsL maintained by the algorithm above contains a subsetof these \minimal" sets, i.e., the ones of the lowest pos-sible cardinality. Empirically, this list L is often muchsmaller than the list of all \minimal" feature sets, and istherefore much quicker to update when a new example ispresented to the system. Figure 4 shows the average num-ber of \minimal" sets that existed during the generationof the learning curve in Figure 3, and contrasts this withthe much smaller number of sets that were actually of thelowest possible cardinality. Regardless of the method bywhich the minimal sets were used to form a feature set forID3, we found that the inductive performance of the twoapproaches was more or less the same.It is interesting to note that the minimum-cardinalityapproach settled on a single determination in all three tri-als after about 30 examples|the same point at which thelearning curve shows a dramatic improvement. This sug-gests strongly that learning the determination, in additionto the decision tree itself, is an important part of inductiveperformance.ConclusionFOCUS-type algorithms are fairly simple to implement,and can signi�cantly improve the performance of machinelearning programs faced with certain types of problems. Ingeneral, however, their approach to searching for relevantfeatures appears to be intractable. Furthermore, they mustbe signi�cantly changed if they are to work properly fornoisy or
oating-point functions. John et al. [4] suggestthat it may be better to select a feature set that yieldsthe best inductive performance by M 0 (as measured bycross-validation), rather than simply identifying an exactlyrelevant feature set. This approach seems promising, andmore likely to tolerate noise.The search for smallest consistent feature sets becomestractable if we are allowed to make certain assumptionsabout the domains in which the machine learning system isworking. If the learning system is allowed to make queriesabout the outputs corresponding to arbitrary input vec-tors, then the determination of smallest possible feature

sets for discrete data becomes completely tractable [3]. Ifit is known that the function being learned is of a cer-tain class (e.g., K-CNF or K-DNF), then the problem onceagain becomes tractable [2].References[1] Almuallim, H. and Dietterich, T. (1991) \Learningwith Many Irrelevant Features." In Proc. AAAI-91.[2] Blum, A. 1990. \Learning Boolean Functions in anIn�nite Attribute Space," Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Com-puting, pp. 64-72. Baltimore, MD.[3] Blum, A.; Hellerstein, L.; and Littlestone, N. 1991.\Learning in the Presence of Finitely or In�nitelyMany Irrelevant Attributes," Proceedings of theFourth Annual Workshop on Computational LearningTheory. Santa Cruz, CA: Morgan Kaufman.[4] John, G. H., Kohavi, R., and P
eger, K. 1994. \Irrel-evant features and the subset selection problem." InProceedings of ML-94. New Brunswick, NJ: MorganKaufmann.[5] Quinlan, R. 1986. \Induction of Decision Trees," Ma-chine Learning, Kluwer Academic, 1:1.[6] Russell, S. J. (1989)The Use of Knowledge in Analogyand Induction. London: Pitman Press.[7] Schlimmer, J. (1993) \E�ciently inducing determina-tions: A complete and systematic search algorithmthat uses optimal pruning." In Proc. ML-93.[8] Wong, S. K. M., and Ziarko, W. (1985) \On opti-mal decision rules in decision tables." Bull. PolishAcad. Sci. (Math.), 33(11-12), 693-696.

